Phenocenter2018-12-18T13:28:46+00:00

PhenoCenter

The LemnaTec PhenoCenter is a laboratory-scale, semi-automated system to record and analyze images of plants, leaf disks, fungi, cultures and small organisms such as mosquito larvae or mites.

Cameras move over a sample stage that can contain trays with pots or up to 18 multi-well plates, assessing large numbers of different samples in one run.

The closed cabinet of the PhenoCenter guarantees consistent and reproducible illumination and imaging conditions, suitable for the camera types supplied by LemnaTec. Lighting is adapted to camera requirements and sample properties. Cameras can be easily repositioned to suit different sample geometries. Different optical configurations are available depending on sample dimensions.

The sensor configuration of the PhenoCenter is customizable to end-user demands. Imaging sensors are moved on an XYZ-axis (Figure 1, left and Figure 2) to accommodate a wide range of phenotyping applications. Plant trays can be loaded manually into the base module, or they are delivered in an automated tray storage unit that brings them onto the imaging stage subsequently (Figure 3, right).

The system is suitable for a wide range of medium-to-high-throughput phenotyping demands. Automated camera exchange inside the system can be performed for three cameras, the manual exchange of additional cameras is possible.

Watch Video
The PhenoCenter Base Module houses sensor mounts for automated exchange and deployment of up to 3 sensors at a time. Top-down and bottom-up illumination are available for visible light cameras. For other sensors, customized illumination is provided together with the corresponding camera.
The Phenocenter Tray Provider is an accessory to the Phenocenter Base Module that allows temporally storing of sample trays in a trolley shelf system and automatic transport of all trays into the Base Module for measuring. Transporting in and out the trays, the Tray Provider enables automatically measuring phenotypic parameters of samples in a series of trays. Thus, the Tray Provider strongly increases the throughput of the Phenocenter. The trolley shelves are loaded with sample trays by the users and connected to the Tray Provider unit. Thereafter, the Tray Provider works off all presented trays and users can attach further trolley shelves when finished. The trolley shelves have a series of slots for trays and can handle trays of different height, depending on the sample type. Sample height in turn defines the number of trays per trolley.
Phenocenter Base Module – camera and sensor options
Visible-light (VIS) Camera Module (standard)Size, count, colour, morphology, texture, movement
Near infrared (NIR) Camera ModuleReflectance in the water band at 1450 nm
Fluorescence Imaging ModuleFluorescence signals of pigments after appropriate excitation
Chlorophyll Fluorescence Kinetics ModulePAM imaging, chlorophyll status and activity
Hyperspectral Imaging ModuleSpectrally resolved reflectance
Multispectral Imaging ModuleReflectance at a series of distinct wavelengths
3D Laser Scanning Module3D point cloud, height and angle
Phenocenter Accessories
Tray ProviderAutomatic delivery of sample trays to the Base Module
Trolley for tray holdersCarrier for temporally storing and transporting of trays; attachable to the Tray Provider
Tray holders with sample adaptorsShelf plates for the Trolleys that carry the sample trays with sample-specific adaptors

References from customers operating a precursor model of the Phenocenter

Campbell ZC, Acosta-Gamboa LM, Nepal N, Lorence A (2018) Engineering plants for tomorrow: how high-throughput phenotyping is contributing to the development of better crops. Phytochem Rev 44:94

Omidbakhshfard MA, Fujikura U, Olas JJ, Xue G-P, Balazadeh S, Mueller-Roeber B (2018) GROWTH-REGULATING FACTOR 9 negatively regulates arabidopsis leaf growth by controlling ORG3 and restricting cell proliferation in leaf primordia. PLoS Genetics 14:e1007484

Brugière N, Zhang W, Xu Q, Scolaro EJ, Lu C, Kahsay RY, Kise R, Trecker L, Williams RW, Hakimi S, Niu X, Lafitte R, Habben JE (2017) Overexpression of RING Domain E3 Ligase ZmXerico1 Confers Drought Tolerance through Regulation of ABA Homeostasis. PLANT PHYSIOLOGY 175:1350–1369

Lucia M. Acosta-Gamboa, Suxing Liu, Erin Langley, Zachary Campbell, Norma Castro-Guerrero, David Mendoza-Cozatl, Argelia Lorence, Acosta-Gamboa LM, Liu S, Langley E, Campbell Z, Castro-Guerrero N, Mendoza-Cozatl D, Lorence A (2017) Moderate to severe water limitation differentially affects the phenome and ionome of Arabidopsis. Functional Plant Biol. 44:94.

Michaud O, Fiorucci A-S, Xenarios I, Fankhauser C (2017) Local auxin production underlies a spatially restricted neighbor-detection response in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 114:7444–7449

Cameras on camera holders in Phenocenter

The Phenocenter can be equipped with five different camera/sensor types, three of which can be mounted and operated at once. Manual exchange of cameras between experiments is possible. Phenocenters are delivered as standard with visible light cameras, all other camera types are optional accessories.

The visible light camera takes photographs that can be processed for data on sample dimensions and morphology together with colour information.

The laser scanner generates three-dimensional point clouds that can be processed for data on sample dimensions and morphology.

The fluorecence camera takes single level fluorescence images that can be processed for fluorescence intensity. Fluorescence – depending on light and filter – refers to fluorescing substances in the samples, e.g. chlorophyll and its degradation products.

The chlorophyll fluorescence camera, a built-in Imaging PAM from Walz GmbH, takes dynamic chlorophyll fluorescence images that can be processed for photosystem II parameters.

The near-infrared camera takes images of NIR-reflectance that can be processed for NIR intensity. With the 1450 nm narrow bandpass filter, signals relate to water content of the samples.

Technical Specifications

Sensors Visible light imaging: 8.1 Megapixel, f=50 mm

Single level fluorescence: 1.4 Megapixel, f=25 mm

Dynamic chlorophyll fluorescence: Walz Imaging PAM

3D Laser Scanner

NIR imaging: 636 x 508 Pixel, f=35 mm, 1450 nm narrow bandpass filter

Auto-changer can accommodate three sensors out of these five

Dimensions Imaging cabinet 1800 x 800 x 1900 mm

Accessories for sample loading on request.

Power 400 VAC 50Hz

unusual but maybe possible