References

LemnaTec is cited in hundreds of publications

Roy B., Sagan V., Haireti A., Newcomb M., Tuberosa R., LeBauer D., Shakoor N. (2024) Early Detection of Drought Stress in Durum Wheat Using Hyperspectral Imaging and Photosystem Sensing. Remote Sensing, 16, 155. DOI:10.3390/rs16010155

Xie Y., Plett D., Evans M., Garrard T., Butt M., Clarke K., Liu H. (2024) Hyperspectral imaging detects biological stress of wheat for early diagnosis of crown rot disease. Computers and Electronics in Agriculture, 217, 108571. DOI:10.1016/j.compag.2023.108571

Armer V., Urban M., Ashfield T., Deeks M.J., Hammond-Kosack K.E. (2023) The trichothecene mycotoxin deoxynivalenol facilitates cell-to-cell invasion during wheat-tissue colonisation by Fusarium graminearum. bioRxiv DOI:10.1101/2023.12.05.570169

Arora A., Misra T., Kumar M., Marwaha S., Kumar S., Chinnusamy V. (2023) Computer Vision Approaches for Plant Phenotypic Parameter Determination. In: S. Chaudhary, C. M. Biradar, S. Divakaran, M. S. Raval (Eds). Digital Ecosystem for Innovation in Agriculture. Studies in Big Data. Springer Nature Singapore, Singapore: 263–270. DOI:10.1007/978-981-99-0577-5_13

Cao Y., Tian D., Tang Z., Liu X., Hu W., Zhang Z., Song S. (2023) OPIA: an open archive of plant images and related phenotypic traits. Nucleic Acids Res. DOI:10.1093/nar/gkad975

Cardellicchio A., Solimani F., Dimauro G., Petrozza A., Summerer S., Cellini F., Renò V. (2023) Detection of tomato plant phenotyping traits using YOLOv5-based single stage detectors. Computers and Electronics in Agriculture, 207, 107757. DOI:10.1016/j.compag.2023.107757

Chairunisa, Rachmat A., Perdani A.Y., Sulistyowati Y., Herliana L., Roy S.J. (2023) Image-based growth evaluation and K+/Na+ ratio of transgenic rice lines harboring AtAVP1 gene under salinity stress. In: PROCEEDINGS OF THE 9TH INTERNATIONAL SYMPOSIUM ON INNOVATIVE BIOPRODUCTION INDONESIA ON BIOTECHNOLOGY AND BIOENGINEERING 2022: Strengthening Bioeconomy through Applied Biotechnology, Bioengineering, and Biodiversity. AIP Conference Proceedings. AIP Publishing: 60015. DOI:10.1063/5.0182839

Chen H., King R., Smith D., Bayon C., Ashfield T., Torriani S., Kanyuka K., Hammond-Kosack K., Bieri S., Rudd J. (2023) Combined pangenomics and transcriptomics reveals core and redundant virulence processes in a rapidly evolving fungal plant pathogen. BMC biology, 21, 24. DOI:10.1186/s12915-023-01520-6

Cherepanov I., Kalganova N., Godovikov I., Soboleva A., Brode M., Basnet A., Gorbach D., Margarit A., Orlova A., Silinskaya S., Bilova T., Meshalkina D., Kamionskaya A., Cherevatskaya M., Frolov A., Weissjohan L.A. (2023) Discovering new plant growth regulators: 4,5-annelated bicyclic sydnone imines – a new type of mesoionic compounds. ChemRxiv DOI:10.26434/chemrxiv-2023-hk9dz

Das Choudhury S., Saha S., Samal A., Mazis A., Awada T. (2023) Drought stress prediction and propagation using time series modeling on multimodal plant image sequences. Frontiers in Plant Science, 14, 1003150. DOI:10.3389/fpls.2023.1003150

Elangovan A., Duc N.T., Raju D., Kumar S., Singh B., Vishwakarma C., Gopala Krishnan S., Ellur R.K., Dalal M., Swain P., Dash S.K., Singh M.P., Sahoo R.N., Dinesh G.K., Gupta P., Chinnusamy V. (2023) Imaging Sensor-Based High-Throughput Measurement of Biomass Using Machine Learning Models in Rice. Agriculture, 13, 852. DOI:10.3390/agriculture13040852

Genangeli A., Avola G., Bindi M., Cantini C., Cellini F., Grillo S., Petrozza A., Riggi E., Ruggiero A., Summerer S., Tedeschi A., Gioli B. (2023) Low-Cost Hyperspectral Imaging to Detect Drought Stress in High-Throughput Phenotyping. Plants (Basel, Switzerland), 12. DOI:10.3390/plants12081730

Girija A., Canales F.J., Haddadi B.S., Dye R., Corke F., Han J., Brook J., Williams K., Beckmann M., Prats E., Doonan J.H., Mur L.A.J. (2023) Metabolomic approaches highlight two mechanisms of accelerated grain filling in Mediterranean oat (Avena sativa L.) cultivars during drought. DOI:10.1101/2023.06.28.546978

Gonzalez E.M., Zarei A., Hendler N., Simmons T., Zarei A., Demieville J., Strand R., Rozzi B., Calleja S., Ellingson H., Cosi M., Davey S., Lavelle D.O., Truco M.J., Swetnam T.L., Merchant N., Michelmore R.W., Lyons E., Pauli D. (2023) PhytoOracle: Scalable, modular phenomics data processing pipelines. Frontiers in Plant Science, 14, 1112973. DOI:10.3389/fpls.2023.1112973

Jacobi J., Budahn H., Nothnagel T., König J. (2023) Studies on the Identification of Resistance to Fusarium oxysporum (Schlecht.) in Different Genetic Backgrounds of Asparagus officinalis (L.) and Its Defense Responses. Horticulturae, 9, 158. DOI:10.3390/horticulturae9020158

Karjalainen J., Hu X., Mäkinen M., Karjalainen A., Järvistö J., Järvenpää K., Sepponen M., Leppänen M.T. (2023) Sulfate sensitivity of aquatic organism in soft freshwaters explored by toxicity tests and species sensitivity distribution. Ecotoxicology and Environmental Safety, 258, 114984. DOI:10.1016/j.ecoenv.2023.114984

Kim J., Lee C., Park J.-E., Mansoor S., Chung Y.S., Kim K. (2023) Drought Stress Restoration Frequencies of Phenotypic Indicators in Early Vegetative Stages of Soybean (Glycine max L.). Sustainability, 15, 4852. DOI:10.3390/su15064852

Kim J., Lee C., Park J., Kim N., Kim S.-L., BAEK J., Chung Y.-S., Kim K. (2023) Comparison of Various Drought Resistance Traits in Soybean (Glycine max L.) Based on Image Analysis for Precision Agriculture. Plants (Basel, Switzerland), 12. DOI:10.3390/plants12122331

Lauterberg M., Tschiersch H., Papa R., Bitocchi E., Neumann K. (2023) Engaging Precision Phenotyping to Scrutinize Vegetative Drought Tolerance and Recovery in Chickpea Plant Genetic Resources. Plants (Basel, Switzerland), 12. DOI:10.3390/plants12152866

Liu J., Shui J., Xu C., Cai X., Wang Q., Wang X. (2023) Temporal phenotypic variation of spinach root traits and its relation to shoot performance. DOI:10.21203/rs.3.rs-3217980/v1

Ludwig E., Sumner J., Berry J., Polydore S., Ficor T., Agnew E., Haines K., Greenham K., Fahlgren N., Mockler T.C., Gehan M.A. (2023) Natural variation in Brachypodium distachyon responses to combined abiotic stresses. The Plant journal for cell and molecular biology. DOI:10.1111/tpj.16387

Michaud O., Krahmer J., Galbier F., Lagier M., Galvão V.C., Ince Y.Ç., Trevisan M., Knerova J., Dickinson P., Hibberd J.M., Zeeman S.C., Fankhauser C. (2023) Abscisic acid modulates neighbor proximity-induced leaf hyponasty in Arabidopsis. Plant Physiol., 191, 542–557. DOI:10.1093/plphys/kiac447

Morton M., Fiene G., Ahmed H.I., Rey E., Abrouk M., Angel Y., Johansen K., Saber N.O., Malbeteau Y., Al-Mashharawi S., Ziliani M.G., Aragon B., Oakey H., Berger B., Brien C., Krattinger S.G., Mousa M.A., McCabe M.F., Negrão S., Tester M., Julkowska M.M. (2023) Deciphering Salt Stress Responses in Solanum pimpinellifolium through High-Throughput Phenotyping. bioRxiv DOI:10.1101/2023.08.15.553433

Ngo H.T.T., Cavagnaro T.R., Jewell N., Brien C.J., Berger B., Watts-Williams S.J. (2023) High-throughput shoot phenotyping reveals temporal growth responses to nitrogen and inorganic and organic phosphorus sources in tomato. AoB PLANTS. DOI:10.1093/aobpla/plad011

Okyere F.G., Cudjoe D., Sadeghi-Tehran P., Virlet N., Riche A.B., Castle M., Greche L., Mohareb F., Simms D., Mhada M., Hawkesford M.J. (2023) Machine Learning Methods for Automatic Segmentation of Images of Field- and Glasshouse-Based Plants for High-Throughput Phenotyping. Plants (Basel, Switzerland), 12. DOI:10.3390/plants12102035

Okyere F.G., Cudjoe D., Sadeghi-Tehran P., Virlet N., Riche A.B., Castle M., Greche L., Simms D., Mhada M., Mohareb F., Hawkesford M.J. (2023) Modeling the spatial-spectral characteristics of plants for nutrient status identification using hyperspectral data and deep learning methods. Frontiers in Plant Science, 14, 1209500. DOI:10.3389/fpls.2023.1209500

Pappula Reddy S.P., Kumar S., Pang J., Chellapilla B., Pal M., Millar A.H., Siddique K.H.M. (2023) High-Throughput Phenotyping for Terminal Drought Stress in Chickpea (Cicer Arietinum L.). DOI:10.2139/ssrn.4657981

Pasam R.K., Kant S., Thoday-Kennedy E., Dimech A., Joshi S., Keeble-Gagnere G., Forrest K., Tibbits J., Hayden M. (2023) Haplotype-Based Genome-Wide Association Analysis Using Exome Capture Assay and Digital Phenotyping Identifies Genetic Loci Underlying Salt Tolerance Mechanisms in Wheat. Plants (Basel, Switzerland), 12. DOI:10.3390/plants12122367

Petrozza A., Summerer S., Melfi D., Mango T., Vurro F., Bettelli M., Janni M., Cellini F., Carriero F. (2023) A Lycopene ε-Cyclase TILLING Allele Enhances Lycopene and Carotenoid Content in Fruit and Improves Drought Stress Tolerance in Tomato Plants. Genes, 14, 1284. DOI:10.3390/genes14061284

Quiñones R., Samal A., Das Choudhury S., Muñoz-Arriola F. (2023) OSC-CO2: coattention and cosegmentation framework for plant state change with multiple features. Front Plant Sci, 14. DOI:10.3389/fpls.2023.1211409

Reena R., Doonan J., Corke F., Williams K., Fry E., Zhang H., Liu Y. (2023) Exploring Open Source Photogrammetry and Deep Learningtechniques for Wheat Plant Phenotyping. DOI:10.2139/ssrn.4583977

Ribeiro V.P., Bajsa-Hirschel J., Tamang P., Meepagala K., Duke S.O. (2023) Antifungal and Phytotoxic Activities of Isolated Compounds from Helietta parvifolia Stems. Molecules (Basel, Switzerland), 28. DOI:10.3390/molecules28237930

Singh B., Kumar S., Elangovan A., Vasht D., Arya S., Duc N.T., Swami P., Pawar G.S., Raju D., Krishna H., Sathee L., Dalal M., Sahoo R.N., Chinnusamy V. (2023) Phenomics based prediction of plant biomass and leaf area in wheat using machine learning approaches. Frontiers in Plant Science, 14, 1214801. DOI:10.3389/fpls.2023.1214801

Tang Z., Chen Z., Gao Y., Xue R., Geng Z., Bu Q., Wang Y., Chen X., Jiang Y., Chen F., Yang W., Hu W. (2023) A Strategy for the Acquisition and Analysis of Image-Based Phenome in Rice during the Whole Growth Period. Plant phenomics (Washington, D.C.), 5, 58. DOI:10.34133/plantphenomics.0058

Thoday-Kennedy E., Dimech A.M., Joshi S., Daetwyler H.D., Hudson D., Spangenberg G., Hayden M., Kant S. (2023) An image dataset of diverse safflower (Carthamus tinctorius L.) genotypes for salt response phenotyping. Data in Brief, 46, 108787. DOI:10.1016/j.dib.2022.108787

Virlet N., Pennacchi J.P., Sadeghi-Tehran P., Ashfield T., Orr D.J., Carmo-Silva E., Hawkesford M.J. (2023) A multiscale approach to investigate fluorescence and NDVI imaging as proxy of photosynthetic traits in wheat. bioRxiv DOI:10.1101/2023.11.10.566533

Wang W., Guo W., Le L., Yu J., Wu Y., Li D., Wang Y., Wang H., Lu X., Qiao H., Gu X., Tian J., Zhang C., Pu L. (2023) Integration of high-throughput phenotyping, GWAS, and predictive models reveals the genetic architecture of plant height in maize. Molecular Plant, 16, 354–373. DOI:10.1016/j.molp.2022.11.016

Weiszmann J., Walther D., Clauw P., Back G., Gunis J., Reichardt I., Koemeda S., Jez J., Nordborg M., Schwarzerova J., Pierides I., Nägele T., Weckwerth W. (2023) Metabolome plasticity in 241 Arabidopsis thaliana accessions reveals evolutionary cold adaptation processes. Plant Physiol., 193, 980–1000. DOI:10.1093/plphys/kiad298

Williams K., Hepworth J., Nichols B.S., Corke F., Woolfenden H., Paajanen P., Steuernagel B., Østergaard L., Morris R.J., Doonan J.H., Wells R. (2023) Integrated Phenomics and Genomics reveals genetic loci associated with inflorescence growth in Brassica napus. DOI:10.1101/2023.03.31.535149

Xu Z., Wu C. (2023) Combination of Transfer Deep Learning and Classical Machine Learning Models for Multi-View Image Analysis. In: IOCMA 2023. MDPI, Basel Switzerland: 13. DOI:10.3390/IOCMA2023-14401

Zahn T., Zhu Z., Ritoff N., Krapf J., Junker A., Altmann T., Schmutzer T., Tüting C., Kastritis P.L., Babben S., Quint M., Pillen K., Maurer A. (2023) Novel exotic alleles of EARLY FLOWERING 3 determine plant development in barley. J. Exp. Bot. DOI:10.1093/jxb/erad127

Acosta-Gamboa L.M., Campbell Z.C., Gao F., Babst B., Lorence A. (2022) A Novel High-Throughput Phenotyping Hydroponic System for Nitrogen Deficiency Studies in Arabidopsis thaliana. Methods Mol Biol, 2539, 19–24. DOI:10.1007/978-1-0716-2537-8_3

Amitrano C., Junker A., D’Agostino N., Pascale S. de, Micco V. de (2022) Integration of high-throughput phenotyping with anatomical traits of leaves to help understanding lettuce acclimation to a changing environment. Planta, 256, 68. DOI: 10.1007/s00425-022-03984-2

Bajsa-Hirschel J., Pan Z., Pandey P., Asolkar R.N., Chittiboyina A.G., Boddy L., Machingura M.C., Duke S.O. (2022) Spliceostatin C, a component of a microbial bioherbicide, is a potent phytotoxin that inhibits the spliceosome. Frontiers in Plant Science, 13, 1019938. DOI:10.3389/fpls.2022.1019938

Bannihatti R.K., Sinha P., Raju D., Das S., Mandal S.N., Raje R.S., Viswanathan C., Kumar S., Gaikwad K., Aggarwal R. (2022) Image Based High throughput Phenotyping for Fusarium Wilt Resistance in Pigeon Pea (Cajanus cajan). Phytoparasitica, 1–16. DOI:10.1007/s12600-022-00993-5

Cárdenas D.M., Bajsa-Hirschel J., Cantrell C.L., Rial C., Varela R.M., Molinillo J.M.G., Macías F.A. (2022) Evaluation of the phytotoxic and antifungal activity of C17 -sesquiterpenoids as potential biopesticides. Pest Manag Sci. DOI:10.1002/ps.7042

Chavez Mendoza K., Peña-Valdivia C.B., Hernández Rodríguez M., Vázquez Sánchez M., Morales Elías N.C., Jiménez Galindo J.C., García Esteva A., Padilla Chacón D. (2022) Phenotypic, Anatomical, and Diel Variation in Sugar Concentration Linked to Cell Wall Invertases in Common Bean Pod Racemes under Water Restriction. Plants (Basel, Switzerland), 11. DOI:10.3390/plants11131622

Chen L., Strauch M., Daub M., Luigs H.-G., Jansen M., Merhof D. (2022) Learning to Segment Fine Structures Under Image-Level Supervision With an Application to Nematode Segmentation. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference, 2022, 2128–2131. DOI: 10.1109/EMBC48229.2022.9871517

Cieslak M., Khan N., Ferraro P., Soolanayakanahally R., Robinson S.J., Parkin I., McQuillan I., Prusinkiewicz P. (2022) L-system models for image-based phenomics: case studies of maize and canola. In silico Plants, 4. DOI:10.1093/insilicoplants/diab039

Clauw P., Kerdaffrec E., Gunis J., Reichardt-Gomez I., Nizhynska V., Koemeda S., Jez J., Nordborg M. (2022) Locally adaptive temperature response of vegetative growth in Arabidopsis thaliana. Elife, 11. DOI: 10.7554/eLife.77913

Danzi D., Paola D. de, Petrozza A., Summerer S., Cellini F., Pignone D., Janni M. (2022) The Use of Near-Infrared Imaging (NIR) as a Fast Non-Destructive Screening Tool to Identify Drought-Tolerant Wheat Genotypes. Agriculture, 12, 537. DOI:10.3390/agriculture12040537

Deblieck M., Szilagyi G., Andrii F., Saranga Y., Lauterberg M., Neumann K., Krugman T., Perovic D., Pillen K., Ordon F. (2022) Dissection of a grain yield QTL from wild emmer wheat reveals sub-intervals associated with culm length and kernel number. Frontiers in genetics, 13, 955295. DOI:10.3389/fgene.2022.955295

Dunlevy J.D., Blackmore D.H., Betts A., Jewell N., Brien C., Berger B., Walker R.R., Edwards E.J., Walker A.R. (2022) Investigating the effects of elevated temperature on salinity tolerance traits in grapevine rootstocks using high‐throughput phenotyping. Aust J Grape and Wine Res, 28, 276–291. DOI:10.1111/ajgw.12549

Gachoki P., Muraya M., Njoroge G. (2022) Features Selection in Statistical Classification of High Dimensional Image Derived Maize (Zea Mays L.) Phenomic Data. AJAMS, 10, 44–51. DOI: 10.12691/ajams-10-2-2

Khapte P.S., Kumar P., Wakchaure G.C., Jangid K.K., Colla G., Cardarelli M., Rane J. (2022) Application of Phenomics to Elucidate the Influence of Rootstocks on Drought Response of Tomato. Agronomy, 12, 1529. DOI:10.3390/agronomy12071529

Koh J.C.O., Banerjee B.P., Spangenberg G., Kant S. (2022) Automated hyperspectral vegetation index derivation using a hyperparameter optimisation framework for high-throughput plant phenotyping. New Phytol, 233, 2659–2670. DOI: 10.1111/nph.17947

Laxman R.H., Hemamalini P., Namratha M.R., Bhatt R.M., Sadashiva A.T. (2022) Phenotyping Deficit Moisture Stress Tolerance in Tomato Using Image Derived Digital Features. IJBSM, 13, 339–347. DOI:10.23910/1.2022.2544

Medina-Jimenez K., Arteaga-Vazquez M.A., Lorence A. (2022) An Automated High-Throughput Phenotyping System for Marchantia polymorpha. Methods Mol Biol, 2539, 11–17. DOI:10.1007/978-1-0716-2537-8_2

Min L.-J., Wang H., Bajsa-Hirschel J., Yu C.-S., Wang B., Yao M.-M., Han L., Cantrell C.L., Duke S.O., Sun N.-B., Liu X.-H. (2022) Novel Dioxolane Ring Compounds for the Management of Phytopathogen Diseases as Ergosterol Biosynthesis Inhibitors: Synthesis, Biological Activities, and Molecular Docking. J Agric Food Chem, 70, 4303–4315. DOI: 10.1021/acs.jafc.2c00541

Pabuayon I.C.M., Pabuayon I.L.B., Singh R.K., Ritchie G.L., los Reyes B.G. de (2022) Applicability of hyperspectral imaging during salinity stress in rice for tracking Na+ and K+ levels in planta. PLoS ONE, 17, e0270931. DOI: 10.1371/journal.pone.0270931

Padilla-Chacón D., Peña-Valdivia C.B. (2022) High-Throughput Screening to Examine the Dynamic of Stay-Green by an Imaging System. Methods Mol Biol, 2539, 3–9. DOI:10.1007/978-1-0716-2537-8_1

Priya H., Dhar D.W., Singh R., Kumar S., Dhandapani R., Pandey R., Govindasamy V., Kumar A. (2022) Co-cultivation Approach to Decipher the Influence of Nitrogen-Fixing Cyanobacterium on Growth and N Uptake in Rice Crop. Current Microbiology, 79, 53. DOI:10.1007/s00284-021-02732-1

Qi M., Berry J.C., Veley K.W., O’Connor L., Finkel O.M., Salas-González I., Kuhs M., Jupe J., Holcomb E., Del Glavina Rio T., Creech C., Liu P., Tringe S.G., Dangl J.L., Schachtman D.P., Bart R.S. (2022) Identification of beneficial and detrimental bacteria impacting sorghum responses to drought using multi-scale and multi-system microbiome comparisons. ISME J, 1–13. DOI:10.1038/s41396-022-01245-4

Rossi R., Costafreda-Aumedes S., Summerer S., Moriondo M., Leolini L., Cellini F., Bindi M., Petrozza A. (2022) A Comparison of High-Throughput Imaging Methods for Quantifying Plant Growth Traits and Estimating Above-Ground Biomass Accumulation. SSRN Journal. DOI:10.2139/ssrn.4111955

Vishal M.K., Saluja R., Aggrawal D., Banerjee B., Raju D., Kumar S., Chinnusamy V., Sahoo R.N., Adinarayana J. (2022) Leaf Count Aided Novel Framework for Rice (Oryza sativa L.) Genotypes Discrimination in Phenomics: Leveraging Computer Vision and Deep Learning Applications. Plants (Basel, Switzerland), 11. DOI: 10.3390/plants11192663

Xie Y., Plett D., Clarke K., Evans M., Garrard T., Butt M., Liu H. (2022) Application of Hyperspectral Imaging Technologies for Early Detection of Crown Rot Disease in Wheat Under Controlled Environment. SSRN Journal. DOI: 10.2139/ssrn.4217308

Wlodkowic D., Jansen M. (2022) High-throughput screening paradigms in ecotoxicity testing: Emerging prospects and ongoing challenges. Chemosphere, 307, 135929. DOI:10.1016/j.chemosphere.2022.135929

Zahn T., Zhu Z., Ritoff N., Krapf J., Junker A., Altmann T., Schmutzer T., Tüting C., Kastritis P.L., Babben S., Quint M., Pillen K., Maurer A. (2022) Exotic alleles of EARLY FLOWERING 3 determine plant development and grain yield in barley. DOI: 10.1101/2022.07.15.500212

Zhang H., Ge Y., Xie X., Atefi A., Wijewardane N.K., Thapa S. (2022) High throughput analysis of leaf chlorophyll content in sorghum using RGB, hyperspectral, and fluorescence imaging and sensor fusion. Plant Methods, 18, 60. DOI: 10.1186/s13007-022-00892-0

Acosta-Gamboa Lucia M., Nirman N., Karina M.-J., Campbell Zachary C., Cunningham Shannon S., Ae L.J., Argelia L. (2021) Myo -inositol Oxygenase Overexpression Rescues Vitamin C Deficient Arabidopsis (vtc ) Mutants. https://www.biorxiv.org/content/10.1101/2021.02.24.432757v1.full

Avramidou E.V., Moysiadis T., Ganopoulos I., Michailidis M., Kissoudis C., Valasiadis D., Kazantzis K., Tsaroucha E., Tsaftaris A., Molassiotis A., Aravanopoulos F.A., Xanthopoulou A. (2021) Phenotypic, Genetic, and Epigenetic Variation among Diverse Sweet Cherry Gene Pools. Agronomy, 11, 680. https://www.mdpi.com/2073-4395/11/4/680

Bashyam S., Choudhury S.D., Samal A., Awada T. (2021) Visual Growth Tracking for Automated Leaf Stage Monitoring Based on Image Sequence Analysis. Remote Sensing, 13, 961. https://www.mdpi.com/2072-4292/13/5/961

Bacher H., Zhu F., Gao T., Liu K., Dhatt B.K., Awada T., Zhang C., Distelfeld A., Yu H., Peleg Z., Walia H. (2021) Wild emmer introgression alters root-to-shoot growth dynamics in durum wheat in response to water stress. Plant Physiol., 187, 1149–1162. DOI:10.1093/plphys/kiab292

Borjigin C., Schilling R.K., Jewell N., Brien C., Sanchez-Ferrero J.C., Eckermann P.J., Watson-Haigh N.S., Berger B., Pearson A.S., Roy S.J. (2021) Identifying the genetic control of salinity tolerance in the bread wheat landrace Mocho de Espiga Branca. Functional plant biology FPB, 48, 1148–1160. https://www.publish.csiro.au/FP/FP21140

Camargo Rodriguez A.V. (2021) Integrative Modelling of Gene Expression and Digital Phenotypes to Describe Senescence in Wheat. Genes, 12. https://www.mdpi.com/2073-4425/12/6/909

Cayetano-Marcial M.I., Peña-Valdivia C.B., Esteva A.G., Galindo J.J., Escobedo I.G., Chacón D.P. (2021)  Humidity Restriction, High Night Temperature and their Combination, during Post Flowering on Common Bean (Phaseolus vulgaris L.) Canopy and Pod Senescence. LR. https://arccjournals.com/journal/legume-research-an-international-journal/LR-592

Chai Y.N., Ge Y., Stoerger V., Schachtman D.P. (2021) High-resolution phenotyping of sorghum genotypic and phenotypic responses to low nitrogen and synthetic microbial communities. Plant Cell Environ. https://onlinelibrary.wiley.com/doi/abs/10.1111/pce.14004

Chen L., Daub M., Luigs H.-G., Jansen M., Strauch M., Merhof D. High-throughput Phenotyping of Nematode Cysts. https://arxiv.org/pdf/2110.07057v1.pdf

Cieslak M., Khan N., Ferraro P., Soolanayakanahally R., Robinson S.J., Parkin I., McQuillan I., Prusinkiewicz P. (2021) L-system models for image-based phenomics: case studies of maize and canola. In silico Plants. https://academic.oup.com/insilicoplants/advance-article/doi/10.1093/insilicoplants/diab039/6459040

Dar Z.A., Dar S.A., Khan J.A., Lone A.A., Langyan S., Lone B.A., Kanth R.H., Iqbal A., Rane J., Wani S.H., Alfarraj S., Alharbi S.A., Brestic M., Ansari M.J. (2021) Identification for surrogate drought tolerance in maize inbred lines utilizing high-throughput phenomics approach. PLoS ONE, 16, e0254318. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0254318

Dissanayake R., Cogan N.O.I., Smith K.F., Kaur S. (2021) Application of Genomics to Understand Salt Tolerance in Lentil. Genes, 12, 332. https://www.mdpi.com/2073-4425/12/3/332

Dwivedi P., Ramawat N., Raju D., Dhawan G., Gopala Krishnan S., Chinnusamy V., Bhowmick P.K., Vinod K.K., Pal M., Nagarajan M., Ellur R.K., Bollinedi H., Singh A.K. (2021) Drought Tolerant Near Isogenic Lines of Pusa 44 Pyramided With qDTY2.1 and qDTY3.1, Show Accelerated Recovery Response in a High Throughput Phenomics Based Phenotyping. Frontiers in Plant Science, 12, 752730. DOI: 10.3389/fpls.2021.752730

Dodig D., Božinović S., Nikolić A., Zorić M., Vančetović J., Ignjatović-Micić D., Delić N., Weigelt-Fischer K., Altmann T., Junker A. (2021) Dynamics of Maize Vegetative Growth and Drought Adaptability Using Image-Based Phenotyping Under Controlled Conditions. Frontiers in Plant Science, 12, 652116. https://www.frontiersin.org/articles/10.3389/fpls.2021.652116/full

Fadoul H.E., Martínez Rivas F.J., Neumann K., Balazadeh S., Fernie A.R., Alseekh S. (2021) Comparative Molecular and Metabolic Profiling of Two Contrasting Wheat Cultivars under Drought Stress. International Journal of Molecular Sciences, 22. https://www.mdpi.com/1422-0067/22/24/13287

Faralli M., Williams K., Corke F., Li M., Doonan J.H., Varotto C. (2021) Interspecific and intraspecific phenotypic diversity for drought adaptation in bioenergy Arundo species. GCB Bioenergy, 13, 753–769. https://onlinelibrary.wiley.com/doi/abs/10.1111/gcbb.12810

Ghahremani M., Williams K., Corke F.M.K., Tiddeman B., Liu Y., Doonan J.H. (2021) Deep Segmentation of Point Clouds of Wheat. Frontiers in Plant Science, 12, 608732. https://www.frontiersin.org/articles/10.3389/fpls.2021.608732/full

Ghahremani M., Williams K., Corke F., Tiddeman B., Liu Y., Wang X., Doonan J.H. (2021) Direct and accurate feature extraction from 3D point clouds of plants using RANSAC. Computers and Electronics in Agriculture, 187, 106240. https://www.sciencedirect.com/science/article/abs/pii/S016816992100257X

Henke M., Neumann K., Altmann T., Gladilin E. (2021) Semi-Automated Ground Truth Segmentation and Phenotyping of Plant Structures Using k-Means Clustering of Eigen-Colors (kmSeg). Agriculture, 11, 1098. https://www.mdpi.com/2077-0472/11/11/1098

Herritt M.T., Long J.C., Roybal M.D., Moller D.C., Mockler T.C., Pauli D., Thompson A.L. (2021) FLIP: FLuorescence Imaging Pipeline for field-based chlorophyll fluorescence images. SoftwareX, 14, 100685. https://www.sciencedirect.com/science/article/pii/S2352711021000303?via%3Dihub

Joshi S., Thoday-Kennedy E., Daetwyler H.D., Hayden M., Spangenberg G., Kant S. (2021) High-throughput phenotyping to dissect genotypic differences in safflower for drought tolerance. PLoS ONE, 16, e0254908. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0254908

LeBauer D., Burnette M., Fahlgren N., Kooper R., McHenry K., Stylianou A. (2021) What Does TERRA-REF’s High Resolution, Multi Sensor Plant Sensing Public Domain Data Offer the Computer Vision Community? In: 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW). IEEE. https://openaccess.thecvf.com/content/ICCV2021W/CVPPA/html/LeBauer_What_Does_TERRA-REFs_High_Resolution_Multi_Sensor_Plant_Sensing_Public_ICCVW_2021_paper.html

Miao C., Guo A., Thompson A.M., Yang J., Ge Y., Schnable J.C. (2021) Automation of leaf counting in maize and sorghum using deep learning. Plant phenome j. https://acsess.onlinelibrary.wiley.com/doi/10.1002/ppj2.20022

Misra T., Arora A., Marwaha S., Jha R.R., Ray M., Varghese E., Kumar S., Nigam A., Sahoo R.N., Chinnusamy V. (2021) Web-SpikeSegNet: Deep Learning Framework for Recognition and Counting of Spikes from Visual Images of Wheat Plants. Research Square. https://www.researchsquare.com/article/rs-230449/v1

Otero-Blanca A., Pérez-Llano Y., Reboledo-Blanco G., Lira-Ruan V., Padilla-Chacon D., Folch-Mallol J.L., Del Sánchez-Carbente M.R., Ponce De León I., Batista-García R.A. (2021) Physcomitrium patens Infection by Colletotrichum gloeosporioides: Understanding the Fungal-Bryophyte Interaction by Microscopy, Phenomics and RNA Sequencing. Journal of fungi (Basel, Switzerland), 7, 677. https://www.mdpi.com/2309-608X/7/8/677/htm

Pabuayon I.C.M., Kitazumi A., Cushman K.R., Singh R.K., Gregorio G.B., Dhatt B., Zabet-Moghaddam M., Walia H., los Reyes B.G. de (2021) Novel and Transgressive Salinity Tolerance in Recombinant Inbred Lines of Rice Created by Physiological Coupling-Uncoupling and Network Rewiring Effects. Frontiers in Plant Science, 12, 615277. https://www.frontiersin.org/articles/10.3389/fpls.2021.615277/full

Piccinini L., Cazzaniga S., Iacopino S., Ballottari M., Giuntoli B., Licausi F. (2021) A synthetic switch based on orange carotenoid protein to control blue light responses in chloroplasts: 26 pp. https://www.biorxiv.org/content/10.1101/2021.01.27.428448v1

Qi M., Berry J.C., Veley K., O’Connor L., Finkel O.M., Salas-González I., Kuhs M., Jupe J., Holcomb E., del Rio T.G., Creech C., Liu P., Tringe S., Dangl J.L., Schachtman D., Bart R.S. (2021) Identification of beneficial and detrimental bacteria that impact sorghum responses to drought using multi-scale and multi-system microbiome comparisons. https://www.biorxiv.org/content/10.1101/2021.04.13.437608v1.abstract

Rane J., Raina S.K., Govindasamy V., Bindumadhava H., Hanjagi P., Giri R., Jangid K.K., Kumar M., Nair R.M. (2021) Use of Phenomics for Differentiation of Mungbean (Vigna radiata L. Wilczek) Genotypes Varying in Growth Rates Per Unit of Water. Frontiers in Plant Science, 12, 692564. https://www.frontiersin.org/articles/10.3389/fpls.2021.692564/full

Roireau J.H., Rosano R.J., Lazzara N.C., Chen T., Bajsa-Hirschel J., Schrader K.K., Duke S.O., Wykoff D., Giuliano R.M. (2020) Synthesis of Pyranopyrans Related to Diplopyrone and Evaluation as Antibacterials and Herbicides. Journal of Agricultural and Food Chemistry, 68, 9906–9916. https://pubs.acs.org/doi/10.1021/acs.jafc.0c02564

Sadeghi-Tehran P., Virlet N., Hawkesford M.J. (2021) A Neural Network Method for Classification of Sunlit and Shaded Components of Wheat Canopies in the Field Using High-Resolution Hyperspectral Imagery. Remote Sensing, 13, 898. https://www.mdpi.com/2072-4292/13/5/898

Saluja M., Zhu F., Yu H., Walia H., Sattler S.E. (2021) Loss of COMT activity reduces lateral root formation and alters the response to water limitation in sorghum brown midrib (bmr) 12 mutant. New Phytol, 229, 2780–2794. https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/nph.17051

Thoday-Kennedy E., Joshi S., Daetwyler H.D., Hayden M., Hudson D., Spangenberg G., Kant S. (2021) Digital Phenotyping to Delineate Salinity Response in Safflower Genotypes. Frontiers in Plant Science, 12, 662498. https://www.frontiersin.org/articles/10.3389/fpls.2021.662498/full

Tran B.T.T., Cavagnaro T.R., Jewell N., Brien C., Berger B., Watts‐Williams S.J. (2021) High‐throughput phenotyping reveals growth of Medicago truncatula is positively affected by arbuscular mycorrhizal fungi even at high soil phosphorus availability. Plants People Planet, 3, 600–613. https://nph.onlinelibrary.wiley.com/doi/10.1002/ppp3.10101

Watts‐Williams S.J., Gill A.R., Jewell N., Brien C.J., Berger B., Tran B.T.T., Mace E., Cruickshank A.W., Jordan D.R., Garnett T., Cavagnaro T.R. (2021) Enhancement of sorghum grain yield and nutrition: A role for arbuscular mycorrhizal fungi regardless of soil phosphorus availability. Plants People Planet. https://nph.onlinelibrary.wiley.com/doi/10.1002/ppp3.10224

Zhu F., Saluja M., Dharni J.S., Paul P., Sattler S.E., Staswick P., Walia H., Yu H. (2021) PhenoImage An open‐source graphical user interface for plant image analysis. Plant phenome j., 4. https://acsess.onlinelibrary.wiley.com/doi/10.1002/ppj2.20015

Zhou S., Chai X., Yang Z., Wang H., Yang C., Sun T. (2021) Maize-IAS: a maize image analysis software using deep learning for high-throughput plant phenotyping. Plant Methods, 17, 48. https://plantmethods.biomedcentral.com/articles/10.1186/s13007-021-00747-0

Acosta-Gamboa LM, Suxing L, Jarrod W C et al., 2020. Characterization of the response to abiotic stresses of high ascorbate Arabidopsis lines using phenomic approaches. Plant physiology and biochemistry PPB / Societe francaise de physiologie vegetale 151, 500–15. doi: 10.1016/j.plaphy.2020.03.038.

Ball K.R., Power S.A., Brien C., Woodin S., Jewell N., Berger B., Pendall E. (2020) High-throughput, image-based phenotyping reveals nutrient-dependent growth facilitation in a grass-legume mixture. PLoS ONE, 15, e0239673. DOI:10.1371/journal.pone.0239673

Banerjee B.P., Joshi S., Thoday-Kennedy E., Pasam R.K., Tibbits J., Hayden M., Spangenberg G., Kant S. (2020) High-throughput phenotyping using digital and hyperspectral imaging-derived biomarkers for genotypic nitrogen response. J. Exp. Bot., 71, 4604–4615. DOI:10.1093/jxb/eraa143

Blanchy G., Virlet N., Sadeghi‐Tehran P., Watts C.W., Hawkesford M.J., Whalley W.R., Binley A. (2020) Time‐intensive geoelectrical monitoring under winter wheat. Near Surface Geophysics, 18, 413–425. DOI:10.1002/nsg.12107

Borjigin C., Schilling R.K., Bose J., Hrmova M., Qiu J., Wege S., Situmorang A., Brien C., Berger B., Gilliham M., Pearson A.S., Roy S.J., Byrt C. (2020) A single nucleotide substitution in TaHKT1;5-D controls shoot Na + accumulation in bread wheat. Plant Cell Environ, 176, 2158–2171. https://doi.org/10.1111/pce.13841

Broad R.C., Bonneau J.P., Beasley J.T., Roden S., Sadowski P., Jewell N., Brien C., Berger B., Tako E., Glahn R.P., Hellens R.P., Johnson A.A.T. (2020) Effect of Rice GDP-L-Galactose Phosphorylase Constitutive Overexpression on Ascorbate Concentration, Stress Tolerance, and Iron Bioavailability in Rice. Frontiers in Plant Science, 11, 595439. https://doi.org/10.3389/fpls.2020.595439

Cao S., Huang C., Luo L., Zheng S., Zhong Y., Sun J., Gui J., Li L. (2020) Cell-Specific Suppression of 4-Coumarate-CoA Ligase Gene Reveals Differential Effect of Lignin on Cell Physiological Function in Populus. Frontiers in Plant Science, 11, 589729. https://doi.org/10.3389/fpls.2020.589729

Cazzonelli CI, Hou X, Alagoz Y et al., 2020. A cis-carotene derived apocarotenoid regulates etioplast and chloroplast development. Elife 9. doi: 10.7554/eLife.45310.

Chen L., Strauch M., Daub M., Jiang X., Jansen M., Luigs H.-G., Schultz-Kuhlmann S., Krüssel S., Merhof D. (2020) A CNN FRAMEWORK BASED ON LINE ANNOTATIONS FOR DETECTING NEMATODES IN MICROSCOPIC IMAGEs. IEEE International Symposium on Biomedical Imaging (ISBI).

Del Pozo A, Méndez-Espinoza AM, Romero-Bravo S et al., 2020. Genotypic variations in leaf and whole-plant water use efficiencies are closely related in bread wheat genotypes under well-watered and water-limited conditions during grain filling. Scientific reports 10, 460. doi: 10.1038/s41598-019-57116-0

Dissanayake R., Kahrood H.V., Dimech A.M., Noy D.M., Rosewarne G.M., Smith K.F., Cogan N.O.I., Kaur S. (2020) Development and Application of Image-Based High-Throughput Phenotyping Methodology for Salt Tolerance in Lentils. Agronomy, 10, 1992. https://doi.org/10.3390/agronomy10121992

Ellsworth P.Z., Feldman M.J., Baxter I., Cousins A.B. (2020) A genetic link between leaf carbon isotope composition and whole-plant water use efficiency in the C4 grass Setaria. The Plant journal for cell and molecular biology, 1234–1248. https://onlinelibrary.wiley.com/doi/abs/10.1111/tpj.14696

Herritt M.T., Pauli D., Mockler T.C., Thompson A.L. (2020) Chlorophyll fluorescence imaging captures photochemical efficiency of grain sorghum (Sorghum bicolor) in a field setting. Plant Methods, 16, 109. https://doi.org/10.1186/s13007-020-00650-0

Hüther P., Schandry N., Jandrasits K., Bezrukov I., Becker C. (2020) aradeepopsis: From images to phenotypic traits using deep transfer learning: 20 pp. https://www.biorxiv.org/content/10.1101/2020.04.01.018192v2

Kenchanmane Raju S.K., Adkins M., Enersen A., Santana de Carvalho D., Studer A.J., Ganapathysubramanian B., Schnable P.S., Schnable J.C. (2020) Leaf Angle eXtractor: A high-throughput image processing framework for leaf angle measurements in maize and sorghum. Applications in plant sciences, 8, e11385. https://doi.org/10.1002/aps3.11385

Kim S.L., Kim N., Lee H., Lee E., Cheon K.-S., Kim M., BAEK J., Choi I., Ji H., Yoon I.S., Jung K.-H., Kwon T., Kim K. (2020) High-throughput phenotyping platform for analyzing drought tolerance in rice. Planta, 252, 38. https://doi.org/10.1007/s00425-020-03436-9

Lee J.-S., Chebotarov D., Platten J.D., McNally K., Kohli A. (2020) Advanced Strategic Research to Promote the Use of Rice Genetic Resources. Agronomy, 10, 1629. https://doi.org/10.3390/agronomy10111629

Liu H., Bruning B., Garnett T., Berger B. (2020) The Performances of Hyperspectral Sensors for Proximal Sensing of Nitrogen Levels in Wheat. Sensors, 20, 4550. https://doi.org/10.3390/s20164550

Lyra DH, Virlet N, Sadeghi-Tehran P et al., 2020. Functional QTL mapping and genomic prediction of canopy height in wheat measured using a robotic field phenotyping platform. Journal of Experimental Botany. doi: 10.1093/jxb/erz545.

Mazis A, Choudhury SD, Morgan PB et al., 2020. Application of high-throughput plant phenotyping for assessing biophysical traits and drought response in two oak species under controlled environment. Forest Ecology and Management 465, 118101. doi: 10.1016/j.foreco.2020.118101.

Meepagala K.M., Bracken A.K., Fronczek F.R., Johnson R.D., Wedge D.E., Duke S.O. (2020) Furanocoumarin with Phytotoxic Activity from the Leaves of Amyris elemifera (Rutaceae). ACS Omega. https://doi.org/10.1021/acsomega.0c04778

Narisetti N., Neumann K., Röder M.S., Gladilin E. (2020) Automated Spike Detection in Diverse European Wheat Plants Using Textural Features and the Frangi Filter in 2D Greenhouse Images. Frontiers in Plant Science, 11, 666. https://doi.org/10.3389/fpls.2020.00666

Nepal N., Yactayo-Chang J.P., Gable R., Wilkie A., Martin J., Aniemena C.L., Gaxiola R., Lorence A. (2020) Phenotypic characterization of Arabidopsis thaliana lines overexpressing AVP1 and MIOX4 in response to abiotic stresses. Applications in plant sciences, 8, e11384. https://doi.org/10.1002/aps3.11384

Owens DK, Bajsa-Hirschel J, Duke SO et al., 2020. The Contribution of Romidepsin to the Herbicidal Activity of Burkholderia rinojensis Biopesticide. Journal of natural products. doi: 10.1021/acs.jnatprod.9b00405.

Pabuayon I.C., Kitazumi A., Cushman K.R., Singh R.K., Gregorio G.B., Dhatt B., Zabet-Moghaddam M., Walia H., los Reyes B.G. de (2020) Transgressive segregation for salt tolerance in rice due to physiological coupling and uncoupling and genetic network rewiring. https://doi.org/10.1101/2020.06.25.171603

Saade S., Brien C., Pailles Y., Berger B., Shahid M., Russell J., Waugh R., Negrão S., Tester M. (2020) Dissecting new genetic components of salinity tolerance in two-row spring barley at the vegetative and reproductive stages. PLoS ONE, 15, e0236037. https://doi.org/10.1371/journal.pone.0236037

Schramowski P., Stammer W., Teso S., Brugger A., Herbert F., Shao X., Luigs H.-G., Mahlein A.-K., Kersting K. 2020. Making deep neural networks right for the right scientific reasons by interacting with their explanations. Nature Machine Intelligence 2, 476–86. doi: 10.1038/s42256-020-0212-3.

Shuo Zhou, Xiujuan Chai, Zixuan Yang, Hongwu Wang, Chenxue Yang, Tan Sun (2020) Maize-PAS: Automated Maize Phenotyping Analysis Software using Deep Learning. Research Square.

Ubbens J, Cieslak M, Prusinkiewicz P, 2020. Latent Space Phenotyping: Automatic Image-Based Phenotyping for Treatment Studies. Plant Phenomics 2020, 1–13. doi: 10.34133/2020/5801869.

Ventura I., Brunello L., Iacopino S., Valeri M.C., Novi G., Dornbusch T., Perata P., Loreti E. (2020) Arabidopsis phenotyping reveals the importance of alcohol dehydrogenase and pyruvate decarboxylase for aerobic plant growth. Sci Rep, 10. https://doi.org/10.1038/s41598-020-73704-x

Wang J., Dimech A.M., Spangenberg G., Smith K., Badenhorst P. (2020) Rapid Screening of Nitrogen Use Efficiency in Perennial Ryegrass (Lolium perenne L.) Using Automated Image-Based Phenotyping. Frontiers in Plant Science, 11, 565361. https://doi.org/10.3389/fpls.2020.565361

Weiszmann J., Clauw P., Jagoda J., Reichardt-Gomez I., Koemeda S., Jez J., Nordborg M., Walther D., Nägele T., Weckwerth W. (2020) Plasticity of the primary metabolome in 241 cold grown Arabidopsis thaliana accessions and its relation to natural habitat temperature. https://doi.org/10.1101/2020.09.24.311092

Briglia N, Nuzzo V, Petrozza A, Summerer S, Cellini F, Montanaro G (2019) Preliminary high-throughput phenotyping analysis in grapevines under drought. BIO Web Conf. 13:2003 https://www.bio-conferences.org/articles/bioconf/abs/2019/02/bioconf_conavi2018_02003/bioconf_conavi2018_02003.html

Brugger A, Behmann J, Paulus S, Luigs H-G, Kuska MT, Schramowski P, Kersting K, Steiner U, Mahlein A-K (2019) Extending Hyperspectral Imaging for Plant Phenotyping to the UV-Range. Remote Sensing 11:1401 https://www.mdpi.com/2072-4292/11/12/1401

Cazzonelli CI, Hou X, Alagoz Y, Rivers J, Dhami N, Lee J, Marri S, Pogson BJ (2019) A cis -carotene derived apocarotenoid regulates etioplast and chloroplast development https://www.biorxiv.org/content/10.1101/528331v1

Chang L, Yin Y, Xiang J, Liu Q, Li D, Huang D (2019) A Phenotype-Based Approach for the Substrate Water Status Forecast of Greenhouse Netted Muskmelon. Sensors (Basel, Switzerland) 19; DOI:10.3390/s19122673; https://www.mdpi.com/1424-8220/19/12/2673

Chen L., Strauch M., Daub M., Jansen M., Luigs H.-G., Merhof D. (2019) Instance Segmentation of Nematode Cysts in Microscopic Images of Soil Samples *. In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE: 5932–5936.

Chen S, Guo Y, Sirault X, Stefanova K, Saradadevi R, Turner NC, Nelson MN, Furbank RT, Siddique KHM, Cowling WA (2019) Nondestructive Phenomic Tools for the Prediction of Heat and Drought Tolerance at Anthesis in Brassica Species. Plant Phenomics 2019:1–16; DOI: 10.34133/2019/3264872; https://spj.sciencemag.org/plantphenomics/2019/3264872/

Das Choudhury S, Samal A, Awada T (2019) Leveraging Image Analysis for High-Throughput Plant Phenotyping. Frontiers in Plant Science 10:2080; DOI: 10.3389/fpls.2019.00508; https://www.frontiersin.org/articles/10.3389/fpls.2019.00508/full

Díaz-Tielas C, Graña E, Sánchez-Moreiras AM, Reigosa MJ, Vaughn JN, Pan Z, Bajsa-Hirshel J, Duke MV, Duke SO (2019) Transcriptome responses to the natural phytotoxin t-chalcone in Arabidopsis thaliana L. Pest Management Science https://onlinelibrary.wiley.com/doi/abs/10.1002/ps.5405

Dodig D, Božinović S, Nikolić A, Zorić M, Vančetović J, Ignjatović-Micić D, Delić N, Weigelt-Fischer K, Junker A, Altmann T (2019) Image-Derived Traits Related to Mid-Season Growth Performance of Maize Under Nitrogen and Water Stress. Frontiers in Plant Science 10:29; DOI:10.3389/fpls.2019.00814; https://www.frontiersin.org/articles/10.3389/fpls.2019.00814/full?utm_source=FRN&utm_medium=EMAIL_IRIS&utm_campaign=EMI_FRN_ARTICLEPUBLISHED_FOLLOWERS&utm_content=ARTICLE_TITLE

Faralli M, Williams KS, Han J, Corke FMK, Doonan JH, Kettlewell PS (2019) Water-Saving Traits Can Protect Wheat Grain Number Under Progressive Soil Drying at the Meiotic Stage: A Phenotyping Approach. Journal of Plant Growth Regulation 31:11; DOI:10.1007/s00344-019-09956-3; https://link.springer.com/article/10.1007/s00344-019-09956-3

Favaretto A, Cantrell CL, Fronczek FR, Duke SO, Wedge DE, Ali A, Scheffer-Basso SM (2019) New Phytotoxic Cassane-like Diterpenoids from Eragrostis plana. J Agric Food Chem https://pubs.acs.org/doi/10.1021/acs.jafc.8b06832

Suraj Gampa (2019) A Data-driven Approach for Detecting Stress in Plants Using Hyperspectral Imagery. Dissertation, Lincoln, Nebraska, USA; https://digitalcommons.unl.edu/computerscidiss/169/

Henke M, Junker A, Neumann K, Altmann T, Gladilin E (2019) Comparison and extension of three methods for automated registration of multimodal plant images. Plant methods 15:44; DOI:10.1186/s13007-019-0426-8; https://plantmethods.biomedcentral.com/articles/10.1186/s13007-019-0426-8

Kim SL, Chung YS, Ji H, Lee H, Choi I, Kim N, Lee E, Oh J, Kang D-Y, BAEK J, Lee G-S, Kwon T-r, Kim K-h (2019) New Parameters for Seedling Vigor Developed via Phenomics. Applied Sciences 9:1752; DOI:10.3390/app9091752; https://www.mdpi.com/2076-3417/9/9/1752

Kim SL, Chung YS, Silva RR, Ji H, Lee H, Choi I, Kim N, Lee E, BAEK J, Lee G-S, Kwon T-r, Kim K-h (2019) The opening of phenome-assisted selection era in the early seedling stage. Scientific reports 9:9948; DOI:10.1038/s41598-019-46405-3; https://www.nature.com/articles/s41598-019-46405-3

Lellis AD, Patrick RM, Mayberry LK, Lorence A, Campbell ZC, Roose JL, Frankel LK, Bricker TM, Hellmann HA, Mayberry RW, Solis Zavala A, Choy GS, Wylie DC, Abdul-Moheeth M, Masood A, Prater AG, van Hoorn HE, Cole N, Browning KS (2019) eIFiso4G augments the synthesis of specific plant proteins involved in normal chloroplast function. PLANT PHYSIOLOGY; DOI:10.1104/pp.19.00557; http://www.plantphysiol.org/content/early/2019/07/15/pp.19.00557

Li Z, Liu Y, Liu R (2019) Integrating Multiple-capsule Traits Quantitative Evaluation of Seed Maturity by 3D Phenotypic Platform in Nicotiana tabacum. horts 54:993–997. https://journals.ashs.org/hortsci/view/journals/hortsci/54/6/article-p993.xml

Markiewicz M, Zhang Y-Q, Empl M, Lykaki M, Thöming J, Steinberg P, Stolte S (2019) Hazard assessment of quinaldine-, alkylcarbazole-, benzene- and toluene-based liquid organic hydrogen carrier (LOHCs) systems. Energy Environ. Sci. https://pubs.rsc.org/en/Content/ArticleLanding/2019/EE/C8EE01696H#!divAbstract

Marko D, El-Shershaby A, Carriero F, Summerer S, Petrozza A, Iannacone R, Schleiff E, Fragkostefanakis S (2019) Identification and Characterization of a Thermotolerant TILLING Allele of Heat Shock Binding Protein 1 in Tomato. Genes 10; DOI:10.3390/genes10070516; https://www.mdpi.com/2073-4425/10/7/516/htm

Padilla-Chacón D, Peña Valdivia CB, García-Esteva A, Cayetano-Marcial MI, Kohashi Shibata J (2019) Phenotypic variation and biomass partitioning during post-flowering in two common bean cultivars (Phaseolus vulgaris L.) under water restriction. South African Journal of Botany 121:98–104 https://www.sciencedirect.com/science/article/pii/S0254629918307671?via%3Dihub

Perera WH, Meepa KM, Fronczek FR, Cook DD, Wedge DE, Duke SO (2019) Bioassay-Guided Isolation and Structure Elucidation of Fungicidal and Herbicidal Compounds from Ambrosia salsola (Asteraceae). Molecules (Basel, Switzerland) 24; DOI:10.3390/molecules24050835; https://www.mdpi.com/1420-3049/24/5/835

Rane J, Singh AK, George P, Govindasamy V, Cukkemane A, Raina SK, Chavan MP, Aher L, Sunoj VSJ, Singh NP (2019) Effect of Cow Urine-Based Bioformulations on Growth and Physiological Responses in Mungbean Under Soil Moisture Stress Conditions. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 56:245 https://link.springer.com/article/10.1007%2Fs40011-019-01088-8

Vieira NSM, Stolte S, Araújo JMM, Rebelo LPN, Pereiro AB, Markiewicz M (2019) Acute Aquatic Toxicity and Biodegradability of Fluorinated Ionic Liquids. ACS Sustainable Chem. Eng. https://pubs.acs.org/doi/10.1021/acssuschemeng.8b03653

Ward B, Brien C, Oakey H, Pearson A, Negrão S, Schilling RK, Taylor J, Jarvis D, Timmins A, Roy SJ, Tester M, Berger B, van den Hengel A (2019) High-throughput 3D modelling to dissect the genetic control of leaf elongation in barley (Hordeum vulgare). The Plant Journal https://onlinelibrary.wiley.com/doi/abs/10.1111/tpj.14225

Asif MA, Schilling RK, Tilbrook J, Brien C, Dowling K, Rabie H, Short L, Trittermann C, Garcia A, Barrett-Lennard EG, Berger B, Mather DE, Gilliham M, Fleury D, Tester M, Roy SJ, Pearson AS (2018). Mapping of novel salt tolerance QTL in an Excalibur × Kukri doubled haploid wheat population. TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik https://link.springer.com/article/10.1007%2Fs00122-018-3146-y

Bao Y, Tang L, Breitzman MW, Salas Fernandez MG, Schnable PS (2018). Field-based robotic phenotyping of sorghum plant architecture using stereo vision. J. Field Robotics 41:68. https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21830

Berry JC, Fahlgren N, Pokorny AA, Bart RS, Veley KM (2018) An automated, high-throughput method for standardizing image color profiles to improve image-based plant phenotyping. PeerJ 6:e5727 https://peerj.com/articles/5727/

Białk-Bielińska A, Matzke M, Caban M, Stolte S, Kumirska J, Stepnowski P (2018). Effects of five sulphonamides on duckweed (Lemna minor) after prolonged exposure time and their dependency on photoradiation. The Science of the total environment 618:952–960. https://www.sciencedirect.com/science/article/pii/S0048969717323070?via%3Dihub 

Chen D, Shi R, Pape J-M, Neumann K, Arend D, Graner A, Chen M, Klukas C (2018) Predicting plant biomass accumulation from image-derived parameters. GigaScience https://academic.oup.com/gigascience/article/7/2/giy001/4810759

Czedik-Eysenberg A, Seitner S, Güldener U, Koemeda S, Jez J, Colombini M, Djamei A (2018) The ‘PhenoBox’, a flexible, automated, open-source plant phenotyping solution. The New phytologist https://nph.onlinelibrary.wiley.com/doi/full/10.1111/nph.15129

Das Choudhury S, Bashyam S, Qiu Y, Samal A, Awada T (2018) Holistic and component plant phenotyping using temporal image sequence. Plant methods 14:585 https://plantmethods.biomedcentral.com/articles/10.1186/s13007-018-0303-x

Camargo AV, Mackay I, Mott R, Han J, Doonan JH, Askew K, Corke F, Williams K, Bentley AR (2018). Functional Mapping of Quantitative Trait Loci (QTLs) Associated With Plant Performance in a Wheat MAGIC Mapping Population. Front. Plant Sci. 9:887. https://www.frontiersin.org/articles/10.3389/fpls.2018.00887/full

Campbell ZC, Acosta-Gamboa LM, Nepal N, Lorence A (2018). Engineering plants for tomorrow: how high-throughput phenotyping is contributing to the development of better crops. Phytochem Rev 44:94. https://link.springer.com/article/10.1007%2Fs11101-018-9585-x

da Costa RMF, Simister R, Roberts LA, Timms-Taravella E, Cambler AB, Corke FMK, Han J, Ward RJ, Buckeridge MS, Gomez LD, Bosch M (2018). Nutrient and drought stress: implications for phenology and biomass quality in miscanthus. Annals of Botany. https://academic.oup.com/aob/advance-article/doi/10.1093/aob/mcy155/5077397

John Doonan and Marcos Egea-Cortines, Doonan J, Egea-Cortines M (eds) (2018) Phenomics. Frontiers Media SA https://www.frontiersin.org/research-topics/4419/phenomics

Ellsworth PZ, Feldman MJ, Baxter I, Cousins AB (2018) A genetic link between leaf carbon isotope composition and whole-plant water use efficiency in the C 4 grass Setaria 9; DOI:10.1101/285676; https://www.biorxiv.org/content/biorxiv/early/2019/03/04/285676.full.pdf

Lászlová K, Dudášová H, Olejníková P, Horváthová G, Velická Z, Horváthová H, Dercová K (2018) The Application of Biosurfactants in Bioremediation of the Aged Sediment Contaminated with Polychlorinated Biphenyls. Water, Air, & Soil Pollution 229:221 https://link.springer.com/article/10.1007/s11270-018-3872-4

Laxman RH, Hemamalini P, Bhatt RM, Sadashiva AT (2018). Non-invasive quantification of tomato (Solanum lycopersicum L.) plant biomass through digital imaging using phenomics platform. Ind J Plant Physiol. 23:369–375. https://link.springer.com/article/10.1007%2Fs40502-018-0374-8

Lee U, Chang S, Putra GA, Kim H, Kim DH (2018) An automated, high-throughput plant phenotyping system using machine learning-based plant segmentation and image analysis. PLoS ONE 13:e0196615 https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0196615

Li H, Yin Z, Manley P, Burken JG, Fahlgren NSN, Mockler T (2018) Early Drought Plant Stress Detection with Bi-Directional Long-Term Memory Networks. photogramm eng remote sensing 84:459–468 https://www.ingentaconnect.com/content/asprs/pers/2018/00000084/00000007/art00015

Henke M, Junker A, Neumann K, Altmann T, Gladilin E (2018) Automated Alignment of Multi-Modal Plant Images Using Integrative Phase Correlation Approach. Frontiers in Plant Science 9:1519 https://www.frontiersin.org/articles/10.3389/fpls.2018.01519/full

Humphreys M.W., Doonan J.H., Boyle R., Rodriguez A.C., Marley C.L., Williams K., Farrell M.S., Brook J., Gasior D., Loka D., Collins R.P., Marshall A.H., Allen D.K., Yadav R.S., Dungait J.A.J., Murray P., Harper J.A. (2018) Root imaging showing comparisons in root distribution and ontogeny in novel Festulolium populations and closely related perennial ryegrass varieties. Food and energy security, 7, e00145. DOI:10.1002/fes3.145

Marko D, Briglia N, Summerer S, Petrozza A, Cellini F, Iannacone R (2018). High-Throughput Phenotyping in Plant Stress Response: Methods and Potential Applications to Polyamine Field. Methods in molecular biology (Clifton, N.J.) 1694:373–388. https://link.springer.com/protocol/10.1007%2F978-1-4939-7398-9_31

Nguyen GN, Norton SL, Rosewarne GM, James LE, Slater AT (2018). Automated phenotyping for early vigour of field pea seedlings in controlled environment by colour imaging technology. PLoS ONE 13:e0207788. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0207788

Omidbakhshfard MA, Fujikura U, Olas JJ, Xue G-P, Balazadeh S, Mueller-Roeber B (2018). GROWTH-REGULATING FACTOR 9 negatively regulates Arabidopsis leaf growth by controlling ORG3 and restricting cell proliferation in leaf primordia. PLoS Genetics 14:e1007484. https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1007484

Phua SY, Pornsiriwong W, Chan KX, Estavillo GM, Pogson BJ (2018.) Development of strategies for genetic manipulation and fine-tuning of a chloroplast retrograde signal 3′-phosphoadenosine 5′-phosphate. Plant Direct 2:e00031. https://onlinelibrary.wiley.com/doi/abs/10.1002/pld3.31

Phua SY, Yan D, Chan KX, Estavillo GM, Nambara E, Pogson BJ (2018) The Arabidopsis SAL1-PAP Pathway: A Case Study for Integrating Chloroplast Retrograde, Light and Hormonal Signaling in Modulating Plant Growth and Development? Frontiers in Plant Science 9:1171 https://www.frontiersin.org/articles/10.3389/fpls.2018.01171/full#h1

Thapa S, Zhu F, Walia H, Yu H, Ge Y (2018) A Novel LiDAR-Based Instrument for High-Throughput, 3D Measurement of Morphological Traits in Maize and Sorghum. Sensors (Basel, Switzerland) 18 https://www.mdpi.com/1424-8220/18/4/1187/html

Wing RA, Purugganan MD, Zhang Q (2018) The rice genome revolution: from an ancient grain to Green Super Rice. Nature Reviews Genetics https://www.nature.com/articles/s41576-018-0024-z

  • Lobiuc, A.; Vasilache, V.; Oroian, M.; Stoleru, T.; Burducea, M.; Pintilie, O.; Zamfirache, M.-M. (2017)

    Blue and Red LED Illumination Improves Growth and Bioactive Compounds Contents in Acyanic and Cyanic Ocimum basilicum L. Microgreens. In: Molecules, DOI: 10.3390/molecules22122111. http://www.mdpi.com/1420-3049/22/12/2111

  • Brugière, Norbert; Zhang, Wenjing; Xu, Qingzhang; Scolaro, Eric J.; Lu, Cheng; Kahsay, Robel Y.; Kise, Rie; Trecker, Libby; Williams, Robert W.; Hakimi, Salim; Niu, Xiping; Lafitte, Renee; Habben, Jeffrey E. (2017)

    Overexpression of RING Domain E3 Ligase ZmXerico1 Confers Drought Tolerance through Regulation of ABA Homeostasis. In: Plant Physiology, S. 1350-1369. DOI: 10.1104/pp.17.01072. http://www.plantphysiol.org/content/175/3/1350

  • D. Marko; N. Briglia; S. Summerer; A. Petrozza; F. Cellini; R. Iannacone (2017)

    High-Throughput Phenotyping in Plant Stress Response: Methods and Potential Applications to Polyamine Field. In: Polyamines, DOI: 10.1007/978-1-4939-7398-9_31. https://link.springer.com/protocol/10.1007/978-1-4939-7398-9_31

  • Velumani, K.; Oude Elberink, S.; Yang, M. Y.; BARET, F. (2017)

    Wheat Ear Detection in Plots by Segmenting Mobile Laser Scanner Data. In: ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., DOI: 10.5194/isprs-annals-IV-2-W4-149-2017. https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/IV-2-W4/149/2017/isprs-annals-IV-2-W4-149-2017.pdf

  • Maria I. Stavropoulou, Apostolis Angelis, Nektarios Aligiannis, Eleftherios Kalpoutzakis, Sofia Mitakou, Stephen O. Duke, Nikolas Fokialakis (2017)

    Phytotoxic triterpene saponins from Bellis longifolia, an endemic plant of Crete. In: Phytochemistry, S. 71-77. DOI: 10.1016/j.phytochem.2017.08.019. http://www.sciencedirect.com/science/article/pii/S0031942217302947

  • Srinivasan Vijayarangan, Paloma Sodhi, Prathamesh Kini, James Bourne, Simon Du, Hanqi Sun, Barnabas Poczos, Dimitrios Apostolopoulos, and David Wettergreen (2017)

    High-throughput Robotic Phenotyping of Energy Sorghum Crops. In: Field and Service Robotics. http://ri.cmu.edu/publications/high-throughput-robotic-phenotyping-of-energy-sorghum-crops/

  • Coneva, Viktoriya; Frank, Margaret H.; Balaguer, Maria A. de Luis; Li, Mao; Sozzani, Rosangela; Chitwood, Daniel H. (2017)

    Genetic Architecture and Molecular Networks Underlying Leaf Thickness in Desert-Adapted Tomato Solanum pennellii. In: Plant Physiology, S. 376-391. DOI: 10.1104/pp.17.00790. http://www.plantphysiol.org/content/175/1/376

  • Zhou, Ji; Applegate, Christopher; Dobon Alonso, Albor; Reynolds, Daniel; Orford, Simon; Mackiewicz, Michal; Griffiths, Simon; Penfield, Steven; Pullen, Nick (2017)

    Leaf-GP: An Open and Automated Software Application for Measuring Growth Phenotypes for Arabidopsis and Wheat. In: bioRxiv, DOI: 10.1101/180083.

  • Guo, Doudou; Juan, Jiaxiang; Chang, Liying; Zhang, Jingjin; Huang, Danfeng (2017)

    Discrimination of plant root zone water status in greenhouse production based on phenotyping and machine learning techniques. In: Scientific reports, DOI: 10.1038/s41598-017-08235-z. http://www.nature.com/articles/s41598-017-08235-z

  • Kerstin Neumann, Yusheng Zhao, Jianting Chu, Jens Keilwagen, Jochen C. Reif, Benjamin Kilian and Andreas Graner (2017)

    Genetic architecture and temporal patterns of biomass accumulation in spring barley revealed by image analysis. In: BMC Plant Biology, DOI: 10.1186/s12870-017-1085-4. https://bmcplantbiol.biomedcentral.com/articles/10.1186/s12870-017-1085-4

  • Pandey, Piyush; Ge, Yufeng; Stoerger, Vincent; Schnable, James C. (2017)

    High Throughput In vivo Analysis of Plant Leaf Chemical Properties Using Hyperspectral Imaging. In: Frontiers in Plant Science, DOI: 10.3389/fpls.2017.01348. http://journal.frontiersin.org/article/10.3389/fpls.2017.01348/full

  • Majewsky, Vera; Scherr, Claudia; Schneider, Claudia; Arlt, Sebastian Patrick; Baumgartner, Stephan (2017)

    Reproducibility of the effects of homeopathically potentised Argentum nitricum on the growth of Lemna gibba L. in a randomised and blinded bioassay. In: Homeopathy, DOI: 10.1016/j.homp.2017.04.001. http://www.sciencedirect.com/science/article/pii/S1475491617300279

  • Liang, Zhikai; Pandey, Piyush; Stoerger, Vincent; Xu, Yuhang; Qiu, Yumou; Ge, Yufeng; Schnable, James C. (2017)

    Conventional and hyperspectral time-series imaging of maize lines widely used in field trials. In: bioRxiv, DOI: 10.1101/169045. https://www.biorxiv.org/content/early/2017/09/21/169045

  • Parlati, Aurora; Valkov, Vladimir T.; D’Apuzzo, Enrica; Alves, Ludovico M.; Petrozza, Angelo; Summerer, Stephan; Costa, Alex; Cellini, Francesco; Vavasseur, Alain; Chiurazzi, Maurizio (2017)

    Ectopic Expression of PII Induces Stomatal Closure in Lotus japonicus. In: Frontiers in Plant Science, DOI: 10.3389/fpls.2017.01299. https://www.frontiersin.org/articles/10.3389/fpls.2017.01299/full

  • Md. Matiur Rahaman; Md. Asif Ahsan; Zeeshan Gillani; Ming Chen (2017)

    Digital BiomassAccumulation Using High-Throughput Plant Phenotype Data Analysis. In: Journal of Integrative Bioinformatics, DOI: 10.1515/jib-2017-0028. https://www.degruyter.com/view/j/jib.2017.14.issue-3/jib-2017-0028/jib-2017-0028.xml

  • Weber, Jonas F.; Kunz, Christoph; Peteinatos, Gerassimos G.; Santel, Hans-Joachim; Gerhards, Roland (2017)

    Utilization of Chlorophyll Fluorescence Imaging Technology to Detect Plant Injury by Herbicides in Sugar Beet and Soybean. In: Weed Technology, DOI: 10.1017/wet.2017.22. https://www.cambridge.org/core/journals/weed-technology/article/utilization-of-chlorophyll-fluorescence-imaging-technology-to-detect-plant-injury-by-herbicides-in-sugar-beet-and-soybean/123B0D51EEB271E6234550B832F488F8https://www.cambridge.org/core/journals/weed-technology/article/utilization-of-chlorophyll-fluorescence-imaging-technology-to-detect-plant-injury-by-herbicides-in-sugar-beet-and-soybean/123B0D51EEB271E6234550B832F488F8

  • Salas Fernandez, Maria G.; Bao, Yin; Tang, Lie; Schnable, Patrick S. (2017)

    A High-Throughput, Field-Based Phenotyping Technology for Tall Biomass Crops. In: Plant Physiology, DOI: 10.1104/pp.17.00707. http://www.plantphysiol.org/content/174/4/2008

  • Ampatzidis, Yiannis; Bellis, Luigi de; Luvisi, Andrea (2017)

    Robotic Applications and Management of Plants and Plant Diseases. In: Sustainability, DOI: 10.3390/su9061010. http://www.mdpi.com/2071-1050/9/6/1010

  • Atieno, Judith; Li, Yongle; Langridge, Peter; Dowling, Kate; Brien, Chris; Berger, Bettina; Varshney, Rajeev K.; Sutton, Tim (2017)

    Exploring genetic variation for salinity tolerance in chickpea using image-based phenotyping. In: Scientific Reports, DOI: 10.1038/s41598-017-01211-7. https://www.nature.com/articles/s41598-017-01211-7

  • Malia A. Gehan and Elizabeth A. Kellogg (2017)

    High-throughput phenotyping. In: American Journal of Botany, DOI: 10.3732/ajb.1700044. http://www.amjbot.org/content/104/4/505

  • Pouria Sadeghi-Tehran, Kasra Sabermanesh, Nicholas Virlet, Malcolm J Hawkesford (2017)

    Automated Method to Determine Two Critical Growth Stages of Wheat: Heading and Flowering. In: Frontiers In Plant Science, DOI: 10.3389/fpls.2017.00252. http://journal.frontiersin.org/article/10.3389/fpls.2017.00252/full

  • Shafiekhani, Ali; Kadam, Suhas; Fritschi, Felix B.; DeSouza, Guilherme N. (2017)

    Vinobot and Vinoculer: Two Robotic Platforms for High-Throughput Field Phenotyping. In: Sensors, DOI: 10.3390/s17010214. http://www.mdpi.com/1424-8220/17/1/214/htm

  • Ferreira, Mariana C.; Cantrell, Charles L.; Duke, Stephen O.; Ali, Abbas; Rosa, Luiz H. (2017)

    New Pesticidal Diterpenoids from Vellozia gigantea (Velloziaceae), an Endemic Neotropical Plant Living in the Endangered Brazilian Biome Rupestrian Grasslands. In: Molecules, DOI: 10.3390/molecules22010175. http://www.mdpi.com/1420-3049/22/1/175/htm

  • Lucia M. Acosta-Gamboa, Suxing Liu, Erin Langley, Zachary Campbell, Norma Castro-Guerrero, David Mendoza-Cozatl, Argelia Lorence (2017)

    Moderate to severe water limitation differentially affects the phenome and ionome of Arabidopsis. In: Functional Plant Biology, S. 94. DOI: 10.1071/FP16172. http://www.publish.csiro.au/fp/FP16172

  • Shao, Mon-Ray; Kumar Kenchanmane Raju, Sunil; Laurie, John D.; Sanchez, Robersy; Mackenzie, Sally A. (2017)

    Stress-responsive pathways and small RNA changes distinguish variable developmental phenotypes caused by MSH1 loss. In: BMC plant biology, S. 47. DOI: 10.1186/s12870-017-0996-4. http://bmcplantbiol.biomedcentral.com/articles/10.1186/s12870-017-0996-4

  • Tschiersch, Henning; Junker, Astrid; Meyer, Rhonda C.; Altmann, Thomas (2017)

    Establishment of integrated protocols for automated high throughput kinetic chlorophyll fluorescence analyses. In: Plant Methods, DOI: 10.1186/s13007-017-0204-4. https://plantmethods.biomedcentral.com/articles/10.1186/s13007-017-0204-4

  • Meng, Rui; Saade, Stephanie; Kurtek, Sebastian; Berger, Bettina; Brien, Chris; Pillen, Klaus; Tester, Mark; Sun, Ying (2017)

    Growth curve registration for evaluating salinity tolerance in barley. In: Plant methods, S. 18. DOI: 10.1186/s13007-017-0165-7. http://plantmethods.biomedcentral.com/articles/10.1186/s13007-017-0165-7

  • Cendrero-Mateo, M. Pilar; Muller, Onno; Albrecht, Hendrik; Burkart, Andreas; Gatzke, Simone; Janssen, Benedikt; Keller, Beat; Körber, Niklas; Kraska, Thorsten; Matsubara, Shizue; Li, Jinquan; Müller-Linow, Mark; Pieruschka, Roland; Pinto, Francisco; Rischbeck, Pablo; Schickling, Anke; Steier, Angelina; Watt, Michelle; Schurr, Ulrich; Rascher, Uwe (2017)

    Field Phenotyping: Concepts and Examples to Quantify Dynamic Plant Traits across Scales in the Field. In: Terrestrial Ecosystem Research Infrastructures, S. 53-80. DOI: 10.1201/9781315368252-4. http://www.crcnetbase.com/doi/10.1201/9781315368252-4

  • van de Velde, Karel; Chandler, Peter Michael; van der Straeten, Dominique; Rohde, Antje (2017)

    Differential coupling of gibberellin responses by Rht-B1c suppressor alleles and Rht-B1b in wheat highlights a unique role for the DELLA N-terminus in dormancy. In: Journal of Experimental Botany, DOI: 10.1093/jxb/erw471. https://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erw471

  • Chaitra, N.; Parinitha, J.; Veena, S.; Raj, Thilak (2017)

    A Survey on Plant Phenotype. In: Indian Journal of Science and Technology, DOI: 10.17485/ijst/2017/v10i4/110713. http://www.indjst.org/index.php/indjst/article/view/110713

  • Rastetter, Nadja; Gerhardt, Almut (2017)

    Toxic potential of different types of sewage sludge as fertiliser in agriculture: ecotoxicological effects on aquatic, sediment and soil indicator species. In: Journal of Soils and Sediments, S. 106–121. DOI: 10.1007/s11368-016-1468-4. http://dx.doi.org/10.1007/s11368-016-1468-4

  • Malinowska, Marta; Donnison, Iain S.; Robson, Paul R.H. (2017)

    Phenomics analysis of drought responses in Miscanthus collected from different geographical locations. In: GCB Bioenergy, DOI: 10.1111/gcbb.12350. http://onlinelibrary.wiley.com/doi/10.1111/gcbb.12350/abstract

  • Muraya, Moses M.; Chu, Jianting; Zhao, Yusheng; Junker, Astrid; Klukas, Christian; Reif, Jochen C.; Altmann, Thomas (2017)

    Genetic variation of growth dynamics in maize (Zea mays L.) revealed through automated non‐invasive phenotyping // Genetic variation of growth dynamics in maize (Zea mays L.) revealed through automated non-invasive phenotyping. In: The Plant Journal, S. 366–380. DOI: 10.1111/tpj.13390. http://dx.doi.org/10.1111/tpj.13390

  • Hawkesford, Malcolm J.; Lorence, Argelia (2016)

    Plant phenotyping: increasing throughput and precision at multiple scales. In: Functional Plant Biology, DOI: 10.1071/FPv44n1_FO.

  • Nicolas Virlet, Kasra Sabermanesh, Pouria Sadeghi-Tehran and Malcolm J. Hawkesford (2016)

    Field Scanalyzer: An automated robotic field phenotyping platform for detailed crop monitoring. In: CSIRO Publishing. http://www.publish.csiro.au/fp/FP16163

  • Shao, Mon-Ray; Shedge, Vikas; Kundariya, Hardik; Lehle, Frederic R.; Mackenzie, Sally A.; Lehle, Fredric R. (2016)

    Ws-2 Introgression in a Proportion of Arabidopsis thaliana Col-0 Stock Seed Produces Specific Phenotypes and Highlights the Importance of Routine Genetic Verification. In: Plant Cell (The Plant Cell), S. tpc.00053.2016. DOI: 10.1105/tpc.16.00053. http://www.plantcell.org/content/early/2016/03/15/tpc.16.00053.full.pdf

  • Ziegler, P.; Sree, K. S.; Appenroth, K.-J. (2016)

    Duckweeds for water remediation and toxicity testing. In: Toxicological & Environmental Chemistry, S. 1–28. DOI: 10.1080/02772248.2015.1094701. http://www.tandfonline.com/doi/full/10.1080/02772248.2015.1094701

  • Zhang, Ya-Qi; Dringen, Ralf; Petters, Charlotte; Rastedt, Wiebke; Köser, Jan; Filser, Juliane; Stolte, Stefan (2016)

    Toxicity of dimercaptosuccinate-coated and un-functionalized magnetic iron oxide nanoparticles towards aquatic organisms. In: Environmental Science: Nano, S. 754–767. DOI: 10.1039/C5EN00222B. http://pubs.rsc.org/en/Content/ArticleLanding/2016/EN/C5EN00222B#!divAbstract

  • Ge, Yufeng; Bai, Geng; Stoerger, Vincent; Schnable, James C. (2016)

    Temporal dynamics of maize plant growth, water use, and leaf water content using automated high throughput RGB and hyperspectral imaging. In: Computers and Electronics in Agriculture, S. 625–632. DOI: 10.1016/j.compag.2016.07.028. http://www.sciencedirect.com/science/article/pii/S0168169916305464

  • Wieczerzak, M.; Namiesnik, J.; Kudlak, B. (2016)

    Bioassays as one of the Green Chemistry tools for assessing environmental quality: A review. In: Environment International, S. 341–361. DOI: 10.1016/j.envint.2016.05.017. http://www.sciencedirect.com/science/article/pii/S016041201630201X

  • Jeudy, Christian; Adrian, Marielle; Baussard, Christophe; Bernard, Celine; Bernaud, Eric; Bourion, Virginie; Busset, Hughes; Cabrera-Bosquet, Llorenc; Cointault, Frederic; Han, Simeng; Lamboeuf, Mickael; Moreau, Delphine; Pivato, Barbara; Prudent, Marion; Trouvelot, Sophie; Truong, Hoai Nam; Vernoud, Vanessa; Voisin, Anne-Sophie; Wipf, Daniel; Salon, Christophe (2016)

    RhizoTubes as a new tool for high throughput imaging of plant root development and architecture: test, comparison with pot grown plants and validation. In: Plant methods, S. 31. DOI: 10.1186/s13007-016-0131-9. http://plantmethods.biomedcentral.com/articles/10.1186/s13007-016-0131-9

  • Meepagala, Kumudini M.; Johnson, Robert D.; Duke, Stephen O. (2016)

    Curvularin and Dehydrocurvularin as Phytotoxic Constituents from Curvularia intermedia Infecting Pandanus amaryllifolius. In: JACEN (Journal of Agricultural Chemistry and Environment), S. 12–22. DOI: 10.4236/jacen.2016.51002. http://www.scirp.org/journal/PaperDownload.aspx?DOI=10.4236/jacen.2016.51002

  • Knecht, Avi C.; Campbell, Malachy T.; Caprez, Adam; Swanson, David R.; Walia, Harkamal (2016)

    Image Harvest: an open-source platform for high-throughput plant image processing and analysis. In: Journal of Experimental Botany, S. 3587–3599. DOI: 10.1093/jxb/erw176. https://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erw176

  • Ferdous, Jannatul; Whitford, Ryan; Nguyen, Martin; Brien, Chris; Langridge, Peter; Tricker, Penny J. (2016)

    Drought-inducible expression of Hv-miR827 enhances drought tolerance in transgenic barley. In: Functional & Integrative Genomics, DOI: 10.1007/s10142-016-0526-8. http://dx.doi.org/10.1007/s10142-016-0526-8

  • Povero, Giovanni; Mejia, Juan F.; Di Tommaso, Donata; Piaggesi, Alberto; Warrior, Prem (2016)

    A Systematic Approach to Discover and Characterize Natural Plant Biostimulants. In: Frontiers in Plant Science, S. 435. DOI: 10.3389/fpls.2016.00435. http://journal.frontiersin.org/article/10.3389/fpls.2016.00435/full

  • Chen, Dijun; Shi, Rongli; Pape, Jean-Michel; Klukas, Christian (2016)

    Predicting plant biomass accumulation from image-derived parameters. In: bioRxiv, DOI: 10.1101/046656. http://biorxiv.org/content/early/2016/03/31/046656

  • Cai, Jinhai; Okamoto, Mamoru; Atieno, Judith; Sutton, Tim; Li, Yongle; Miklavcic, Stanley J. (2016)

    Quantifying the Onset and Progression of Plant Senescence by Color Image Analysis for High Throughput Applications. In: PLoS ONE, S. e0157102. DOI: 10.1371/journal.pone.0157102. http://dx.plos.org/10.1371/journal.pone.0157102

  • Cabrera-Bosquet, Llorenc; Fournier, Christian; Brichet, Nicolas; Welcker, Claude; Suard, Benoit; Tardieu, Francois (2016)

    High-throughput estimation of incident light, light interception and radiation-use efficiency of thousands of plants in a phenotyping platform. In: The New phytologist, DOI: 10.1111/nph.14027. http://onlinelibrary.wiley.com/doi/10.1111/nph.14027/abstract

  • Arend, Daniel; Lange, Matthias; Pape, Jean-Michel; Weigelt-Fischer, Kathleen; Arana-Ceballos, Fernando; Mücke, Ingo; Klukas, Christian; Altmann, Thomas; Scholz, Uwe; Junker, Astrid; Mucke, Ingo (2016)

    Quantitative monitoring of Arabidopsis thaliana growth and development using high-throughput plant phenotyping. In: Scientific Data, S. 160055. DOI: 10.1038/sdata.2016.55. https://www.nature.com/articles/sdata201655

  • Amanda, Dhika; Doblin, Monika Susanne; Galletti, Roberta; Bacic, Antony; Ingram, Gwyneth C.; Johnson, Kim L.; Doblin, Monika S. (2016)

    DEFECTIVE KERNEL1 (DEK1) regulates cell walls in the leaf epidermis // DEFECTIVE KERNEL1 (DEK1) Regulates Cell Walls in the Leaf Epidermis. In: PLANT PHYSIOLOGY, S. 2204–2218. DOI: 10.1104/pp.16.01401. http://www.plantphysiol.org/content/172/4/2204

  • Muscolo, A.; Junker, A.; Klukas, C.; Weigelt-Fischer, K.; Riewe, D.; Altmann, T. (2015)

    Phenotypic and metabolic responses to drought and salinity of four contrasting lentil accessions. In: Journal of Experimental Botany, DOI: 10.1093/jxb/erv208. http://jxb.oxfordjournals.org/lookup/doi/10.1093/jxb/erv208

  • Meepagala, Kumudinim.; Johnson, Robertd.; Techen, Natascha; Wedge, Davide.; Duke, Stepheno. (2015)

    Phomalactone from a Phytopathogenic Fungus Infecting ZINNIA elegans (ASTERACEAE) Leaves. In: J Chem Ecol (Journal of Chemical Ecology), S. 1–11. DOI: 10.1007/s10886-015-0602-x. http://link.springer.com/article/10.1007/s10886-015-0602-x

  • Neilson, E. H.; Edwards, A. M.; Blomstedt, C. K.; Berger, B.; Moller, B. L.; Gleadow, R. M. (2015)

    Utilization of a high-throughput shoot imaging system to examine the dynamic phenotypic responses of a C4 cereal crop plant to nitrogen and water deficiency over time. In: Journal of Experimental Botany, DOI: 10.1093/jxb/eru526. http://jxb.oxfordjournals.org/lookup/doi/10.1093/jxb/eru526

  • Picado, Ana; Paixão, Susanam.; Moita, Liliana; Silva, Luis; Diniz, Mários.; Lourenço, Joana; Peres, Isabel; Castro, Luisa; Correia, Josébrito; Pereira, Joana; Ferreira, Isabel; Matos, Antóniopedroalves; Barquinha, Pedro; Mendonca, Elsa (2015)

    A multi-integrated approach on toxicity effects of engineered TiO2 nanoparticles. In: Front. Environ. Sci. Eng. (Frontiers of Environmental Science & Engineering), S. 1–11. DOI: 10.1007/s11783-015-0775-0. http://link.springer.com/10.1007/s11783-015-0775-0

  • Parent, Boris; Shahinnia, Fahimeh; Maphosa, Lance; Berger, Bettina; Rabie, Huwaida; Chalmers, Ken; Kovalchuk, Alex; Langridge, Peter; Fleury, Delphine (2015)

    Combining field performance with controlled environment plant imaging to identify the genetic control of growth and transpiration underlying yield response to water-deficit stress in wheat. In: Journal of Experimental Botany, DOI: 10.1093/jxb/erv320. http://jxb.oxfordjournals.org/lookup/doi/10.1093/jxb/erv320

  • Sree, K. Sowjanya; Keresztes, Áron; Mueller-Roeber, Bernd; Brandt, Ronny; Eberius, Matthias; Fischer, Wolfgang; Appenroth, Klaus-J. (2015)

    Phytotoxicity of cobalt ions on the duckweed Lemna minor – Morphology, ion uptake, and starch accumulation. In: Chemosphere, S. 149–156. DOI: 10.1016/j.chemosphere.2015.03.008.http://www.sciencedirect.com/science/article/pii/S0045653515002088

  • Takahashi, Fuminori; Tilbrook, Joanne; Trittermann, Christine; Berger, Bettina; Roy, Stuart J.; Seki, Motoaki; Shinozaki, Kazuo; Tester, Mark; Yang, Guangxiao (2015)

    Comparison of Leaf Sheath Transcriptome Profiles with Physiological Traits of Bread Wheat Cultivars under Salinity Stress. In: PLoS ONE, S. e0133322. DOI: 10.1371/journal.pone.0133322.http://dx.plos.org/10.1371/journal.pone.0133322

  • Stolte, S.; Bui, H. T. T.; Steudte, S.; Korinth, V.; Arning, J.; Białk-Bielińska, A.; Bottin-Weber, U.; Cokoja, M.; Hahlbrock, A.; Fetz, V.; Stauber, R.; Jastorff, B.; Hartmann, C.; Fischer, R. W.; Kühn, F. E. (2015)

    Preliminary toxicity and ecotoxicity assessment of methyltrioxorhenium and its derivatives. In: Green Chem, S. 1136–1144. DOI: 10.1039/C4GC01919A.http://pubs.rsc.org/en/Content/ArticleLanding/2015/GC/C4GC01919A#!divAbstract

  • Wagil, Marta; Białk-Bielińska, Anna; Puckowski, Alan; Wychodnik, Katarzyna; Maszkowska, Joanna; Mulkiewicz, Ewa; Kumirska, Jolanta; Stepnowski, Piotr; Stolte, Stefan (2015)

    Toxicity of anthelmintic drugs (fenbendazole and flubendazole) to aquatic organisms. In: Environmental Science and Pollution Research, S. 2566–2573. DOI: 10.1007/s11356-014-3497-0.http://link.springer.com/article/10.1007/s11356-014-3497-0

  • Vello, Emilio; Tomita, Akiko; Diallo, Amadou Oury; Bureau, Thomas E. (2015)

    A Comprehensive Approach to Assess Arabidopsis Survival Phenotype in Water-Limited Condition Using a Non-invasive High-Throughput Phenomics Platform. In: Frontiers in Plant Science, DOI: 10.3389/fpls.2015.01101. http://journal.frontiersin.org/article/10.3389/fpls.2015.01101/full

  • Boyle, Roger; Corke, Fiona; Howarth, Catherine (2015)

    Image-based estimation of oat panicle development using local texture patterns. In: Functional Plant Biology, S. 433. DOI: 10.1071/FP14056.http://www.publish.csiro.au/?paper=FP14056

  • Campbell, Malachy T.; Knecht, Avi C.; Berger, Bettina; Brien, Chris J.; Wang, Dong; Walia, Harkamal (2015)

    Integrating Image-Based Phenomics and Association Analysis to Dissect the Genetic Architecture of Temporal Salinity Responses in Rice. In: PLANT PHYSIOLOGY, S. 1476–1489. DOI: 10.1104/pp.15.00450. http://www.plantphysiol.org/content/168/4/1476

  • Ganguly, Diep; Crisp, Peter; Harter, Klaus; Pogson, Barry J.; Albrecht-Borth, Verónica; Albrecht-Borth, Ver�nica (2015)

    Genetic suppression of plant development and chloroplast biogenesis via the Snowy Cotyledon 3 and Phytochrome B pathways. In: Functional Plant Biology, S. 676. DOI: 10.1071/FP15026. http://www.publish.csiro.au/?paper=FP15026

  • Junker, Astrid; Muraya, Moses M.; Weigelt-Fischer, Kathleen; Arana-Ceballos, Fernando; Klukas, Christian; Melchinger, Albrecht E.; Meyer, Rhonda C.; Riewe, David; Altmann, Thomas (2015)

    Optimizing experimental procedures for quantitative evaluation of crop plant performance in high throughput phenotyping systems. In: Frontiers in Plant Science, DOI: 10.3389/fpls.2014.00770.http://journal.frontiersin.org/article/10.3389/fpls.2014.00770/full

Chen, Dijun; Neumann, Kerstin; Friedel, Swetlana; Kilian, Benjamin; Chen, Ming; Altmann, Thomas; Klukas, Christian (2014) Dissecting the Phenotypic Components of Crop Plant Growth and Drought Responses Based on High-Throughput Image Analysis. In: The Plant Cell Online, S. 4636–4655. DOI: 10.1105/tpc.114.129601. http://www.plantcell.org/lookup/doi/10.1105/tpc.114.129601

Coupel-Ledru, Aude; Lebon, Éric; Christophe, Angélique; Doligez, Agnès; Cabrera-Bosquet, Llorenç; Péchier, Philippe; Hamard, Philippe; This, Patrice; Simonneau, Thierry (2014) Genetic variation in a grapevine progeny (Vitis vinifera L. cvs Grenache× Syrah) reveals inconsistencies between maintenance of daytime leaf water potential and response of transpiration rate under drought. In: Journal of Experimental Botany, S. eru228‐eru228. DOI: 10.1093/jxb/eru228. http://jxb.oxfordjournals.org/content/65/21/6205

Dornbusch, T.; Michaud, O.; Xenarios, I.; Fankhauser, C. (2014) Differentially Phased Leaf Growth and Movements in Arabidopsis Depend on Coordinated Circadian and Light Regulation. In: The Plant Cell, S. 3911–3921. DOI: 10.1105/tpc.114.129031. http://www.plantcell.org/content/26/10/3911

Gopalapillai Y., Vigneault B., Hale B.A. (2014) Root length of aquatic plant, Lemna minor L., as an optimal toxicity endpoint for biomonitoring of mining effluents. Integrated environmental assessment and management, 10, 493–497. DOI:10.1002/ieam.1558

Hairmansis, Aris; Berger, Bettina; Tester, Mark; Roy, Stuart John (2014) Image-based phenotyping for non-destructive screening of different salinity tolerance traits in rice. In: Rice, S. 16.http://www.biomedcentral.com/content/pdf/s12284-014-0016-3.pdf

Harshavardhan, Vokkaliga Thammegowda; van Son; Seiler, Christiane; Junker, Astrid; Weigelt-Fischer, Kathleen; Klukas, Christian; Altmann, Thomas; Sreenivasulu, Nese; Bäumlein, Helmut; Kuhlmann, Markus; Zhang, Jin-Song (2014) AtRD22 and AtUSPL1, Members of the Plant-Specific BURP Domain Family Involved in Arabidopsis thaliana Drought Tolerance. In: PLoS ONE, S. e110065. DOI:10.1371/journal.pone.0110065. http://dx.plos.org/10.1371/journal.pone.0110065

Honsdorf, Nora; March, Timothy John; Berger, Bettina; Tester, Mark; Pillen, Klaus; Zhang, Tianzhen (2014) High-Throughput Phenotyping to Detect Drought Tolerance QTL in Wild Barley Introgression Lines. In: PLoS ONE, S. e97047. DOI: 10.1371/journal.pone.0097047. http://dx.plos.org/10.1371/journal.pone.0097047

Klukas, C.; Chen, D.; Pape, J.-M. (2014) Integrated Analysis Platform: An Open-Source Information System for High-Throughput Plant Phenotyping. In: PLANT PHYSIOLOGY, S. 506–518. DOI: 10.1104/pp.113.233932. http://www.plantphysiol.org/cgi/doi/10.1104/pp.113.233932

Maszkowska, Joanna; Stolte, Stefan; Kumirska, Jolanta; Łukaszewicz, Paulina; Mioduszewska, Katarzyna; Puckowski, Alan; Caban, Magda; Wagil, Marta; Stepnowski, Piotr; Białk-Bielińska, Anna (2014) Beta-blockers in the environment: Part II. Ecotoxicity study. In: Science of The Total Environment, S. 1122–1126. DOI: 10.1016/j.scitotenv.2014.06.039.http://www.sciencedirect.com/science/article/pii/S0048969714008948

Petrozza, Angelo; Santaniello, Antonietta; Summerer, Stephan; Di Tommaso, Gianluca; Di Tommaso, Donata; Paparelli, Eleonora; Piaggesi, Alberto; Perata, Pierdomenico; Cellini, Francesco (2014) Physiological responses to Megafol® treatments in tomato plants under drought stress: A phenomic and molecular approach. In: Scientia Horticulturae, S. 185–192. DOI: 10.1016/j.scienta.2014.05.023. http://linkinghub.elsevier.com/retrieve/pii/S0304423814002891

Poiré, Richard; Chochois, Vincent; Sirault, Xavier R. R.; Vogel, John P.; Watt, Michelle; Furbank, Robert T. (2014) Digital imaging approaches for phenotyping whole plant nitrogen and phosphorus response in Brachypodium distachyon: Digital imaging approaches for phenotyping. In: Journal of Integrative Plant Biology, S. 781–796. DOI: 10.1111/jipb.12198.http://doi.wiley.com/10.1111/jipb.12198

Silva, Ferdinando M. L.; Donega, Mateus A.; Cerdeira, Antonio L.; Corniani, Natália; Velini, Edivaldo D.; Cantrell, Charles L.; Dayan, Franck E.; Coelho, Mariana N.; Shea, Katriona; Duke, Stephen O. (2014) Roots of the Invasive Species Carduus nutans L. and C. acanthoides L. Produce Large Amounts of Aplotaxene, a Possible Allelochemical. In: J Chem Ecol (Journal of Chemical Ecology), S. 276–284. DOI: 10.1007/s10886-014-0390-8. http://link.springer.com/article/10.1007/s10886-014-0390-8

Schilling, Rhiannon K.; Marschner, Petra; Shavrukov, Yuri; Berger, Bettina; Tester, Mark; Roy, Stuart J.; Plett, Darren C. (2014) Expression of the Arabidopsis vacuolar H+ -pyrophosphatase gene (AVP1) improves the shoot biomass of transgenic barley and increases grain yield in a saline field. In: Plant Biotechnology Journal, S. 378–386. DOI: 10.1111/pbi.12145.http://doi.wiley.com/10.1111/pbi.12145

Saran, Raj K.; Ziegler, Melissa; Kudlie, Sara; Harrison, Danielle; Leva, David M.; Scherer, Clay; Coffelt, Mark A. (2014) Behavioral Effects and Tunneling Responses of Eastern Subterranean Termites (Isoptera: Rhinotermitidae) Exposed to Chlorantraniliprole-Treated Soils. In: Journal of Economic Entomology, S. 1878–1889. DOI: 10.1603/EC11393. http://jee.oxfordjournals.org/content/107/5/1878

  • Stolte, Stefan; Steudte, Stephanie; Schebb, Nils Helge; Willenberg, Ina; Stepnowski, Piotr (2013)

    Ecotoxicity of artificial sweeteners and stevioside. In: Environment International, S. 123–127. DOI: 10.1016/j.envint.2013.08.010. http://www.sciencedirect.com/science/article/pii/S0160412013001736

  • Avila, Carlos Augusto; Arevalo-Soliz, Lirio Milenka; Lorence, Argelia; Goggin, Fiona L. (2013)

    Expression of α-DIOXYGENASE 1 in tomato and Arabidopsis contributes to plant defenses against aphids. In: Molecular plant-microbe interactions : MPMI, S. 977–986. DOI: 10.1094/MPMI-01-13-0031-R.. http://apsjournals.apsnet.org/doi/abs/10.1094/MPMI-01-13-0031-R

  • Petrov, Veselin; Schippers, Jos; Benina, Maria; Minkov, Ivan; Mueller-Roeber, Bernd; Gechev, Tsanko; others (2013)

    In search for new players of the oxidative stress network by phenotyping an Arabidopsis T-DNA mutant collection on reactive oxygen species-eliciting chemicals. In: Plant omics journal, S. 46–54.http://search.informit.com.au/documentSummary;dn=226803082169686;res=IELHSS

  • Albrecht-Borth, Verónica; Kauss, Dominika; Fan, Dayong; Hu, Yuanyuan; Collinge, Derek; Marri, Shashikanth; Liebers, Monique; Apel, Klaus; Pfannschmidt, Thomas; Chow, Wah S.; Pogson, Barry J. (2013)

    A novel proteinase, SNOWY COTYLEDON4, is required for photosynthetic acclimation to higher light intensities in Arabidopsis. In: PLANT PHYSIOLOGY, S. 732–745. DOI: 10.1104/pp.113.216036.http://www.plantphysiol.org/content/early/2013/08/12/pp.113.216036.abstract

  • Brien, Chris J.; Berger, Bettina; Rabie, Huwaida; Tester, Mark (2013)

    Accounting for variation in designing greenhouse experiments with special reference to greenhouses containing plants on conveyor systems. In: Plant methods, S. 1–22. DOI: 10.1186/1746-4811-9-5. http://link.springer.com/article/10.1186/1746-4811-9-5

  • Cazzonelli, Christopher I.; Vanstraelen, Marleen; Simon, Sibu; Yin, Kuide; Carron-Arthur, Ashley; Nisar, Nazia; Tarle, Gauri; Cuttriss, Abby J.; Searle, Iain R.; Benkova, Eva; Mathesius, Ulrike; Masle, Josette; Friml, Jiří; Pogson, Barry J.; Muday, Gloria (2013)

    Role of the Arabidopsis PIN6 Auxin Transporter in Auxin Homeostasis and Auxin-Mediated Development. In: PLoS ONE, S. e70069. DOI: 10.1371/journal.pone.0070069. http://dx.plos.org/10.1371/journal.pone.0070069

  • Hayes, Julie E.; Pallotta, Margaret; Baumann, Ute; Berger, Bettina; Langridge, Peter; Sutton, Tim (2013)

    Germanium as a tool to dissect boron toxicity effects in barley and wheat. In: Functional Plant Biology, S. 618. DOI: 10.1071/FP12329. http://www.publish.csiro.au/?paper=FP12329

  • Kołodziejska, Marta; Maszkowska, Joanna; Białk-Bielińska, Anna; Steudte, Stephanie; Kumirska, Jolanta; Stepnowski, Piotr; Stolte, Stefan (2013)

    Aquatic toxicity of four veterinary drugs commonly applied in fish farming and animal husbandry. In: Chemosphere, S. 1253–1259. DOI: 10.1016/j.chemosphere.2013.04.057. http://www.sciencedirect.com/science/article/pii/S0045653513006553

  • Mendonça, Elsa; Picado, Ana; Paixão, Susana M.; Silva, Luís; Barbosa, Marta; Cunha, Maria Ana (2013)

    Ecotoxicological evaluation of wastewater in a municipal WWTP in Lisbon area (Portugal). In: Desalination and Water Treatment, S. 4162–4170. DOI: 10.1080/19443994.2013.768021. http://www.tandfonline.com/doi/abs/10.1080/19443994.2013.768021#.V4TmI3IkrIU

  • Peric, Brezana; Sierra, Jordi; Martí, Esther; Cruañas, Robert; Garau, Maria Antonia; Arning, Jürgen; Bottin-Weber, Ulrike; Stolte, Stefan (2013)

    (Eco)toxicity and biodegradability of selected protic and aprotic ionic liquids. In: Journal of Hazardous Materials, S. 99–105. DOI: 10.1016/j.jhazmat.2013.06.070. http://www.sciencedirect.com/science/article/pii/S0304389413004706

  • Pinheiro, Teresa; Moita, Liliana; Silva, Luís; Mendonça, Elsa; Picado, Ana (2013)

    Nuclear microscopy as a tool in TiO2 nanoparticles bioaccumulation studies in aquatic species. In: Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, S. 117–120. DOI: 10.1016/j.nimb.2012.12.049.http://www.sciencedirect.com/science/article/pii/S0168583X13000256

  • Dornbusch, Tino; Lorrain, Séverine; Kuznetsov, Dmitry; Fortier, Arnaud; Liechti, Robin; Xenarios, Ioannis; Fankhauser, Christian (2012)

    Measuring the diurnal pattern of leaf hyponasty and growth in Arabidopsis – a novel phenotyping approach using laser scanning. In: Functional Plant Biology, S. 860. DOI: 10.1071/FP12018. http://www.publish.csiro.au/?paper=FP12018

  • Klukas, Christian; Pape, Jean-Michel; Entzian, Alexander (2012)

    Analysis of high-throughput plant image data with the information system IAP. In: J Integr Bioinform, S. 191. http://biecoll.ub.uni-bielefeld.de/volltexte/2012/5219/

  • Cerdeira, Antonio L.; Cantrell, Charles L.; Dayan, Franck E.; Byrd, John D.; Duke, Stephen O. (2012)

    Tabanone, a new phytotoxic constituent of cogongrass (Imperata cylindrica). In: Weed science, S. 212–218. http://www.bioone.org/doi/abs/10.1614/WS-D-11-00160.1

  • Grossmann, Klaus; Hutzler, Johannes; Tresch, Stefan; Christiansen, Nicole; Looser, Ralf; Ehrhardt, Thomas (2012)

    On the mode of action of the herbicides cinmethylin and 5-benzyloxymethyl-1, 2-isoxazolines: putative inhibitors of plant tyrosine aminotransferase. In: Pest Management Science, S. 482–492. http://onlinelibrary.wiley.com/doi/10.1002/ps.2319/abstract

  • Okamura, Hideo; Togosmaa, Luvsantsend; Sawamoto, Takuya; Fukushi, Keiichi; Nishida, Tomoaki; Beppu, Toshio (2012)

    Effects of metal pyrithione antifoulants on freshwater macrophyte Lemna gibba G3 determined by image analysis. In: Ecotoxicology, S. 1102–1111. DOI: 10.1007/s10646-012-0865-8. http://link.springer.com/10.1007/s10646-012-0865-8

  • Queiroz, Sonia C. N.; Cantrell, Charles L.; Duke, Stephen O.; Wedge, David E.; Nandula, Vijay K.; Moraes, Rita M.; Cerdeira, Antonio L. (2012)

    Bioassay-Directed Isolation and Identification of Phytotoxic and Fungitoxic Acetylenes from Conyza canadensis. In: Journal of Agricultural and Food Chemistry, S. 5893–5898. DOI: 10.1021/jf3010367. http://pubs.acs.org/doi/abs/10.1021/jf3010367

Arvidsson, Samuel; Pérez-Rodríguez, Paulino; Mueller-Roeber, Bernd (2011) A growth phenotyping pipeline for Arabidopsis thaliana integrating image analysis and rosette area modeling for robust quantification of genotype effects. In: New Phytologist, S. 895–907. DOI: 10.1111/j.1469-8137.2011.03756.x. http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.2011.03756.x/abstract;jsessionid=1F0A2A4A088593B46FD0D28B2D96DC87.f02t01

Białk-Bielińska, Anna; Stolte, Stefan; Arning, Jürgen; Uebers, Ute; Böschen, Andrea; Stepnowski, Piotr; Matzke, Marianne (2011) Ecotoxicity evaluation of selected sulfonamides. In: Chemosphere, S. 928–933. DOI: 10.1016/j.chemosphere.2011.06.058. http://www.sciencedirect.com/science/article/pii/S0045653511007156

Duke SO, Evidente A, Fiore M, Rimando AM, Dayan FE, Vurro M, Christiansen N, Looser R, Hutzler J, Grossmann K (2011) Effects of the aglycone of ascaulitoxin on amino acid metabolism in Lemna paucicostata. Pesticide Biochemistry and Physiology 100:41–50; DOI:10.1016/j.pestbp.2011.02.002; https://www.sciencedirect.com/science/article/abs/pii/S0048357511000319

Golzarian, Mahmood R.; Frick, Ross A.; Rajendran, Karthika; Berger, Bettina; Roy, Stuart; Tester, Mark; Lun, Desmond S. (2011) Accurate inference of shoot biomass from high-throughput images of cereal plants. In: Plant methods, S. 1–11. http://link.springer.com/article/10.1186/1746-4811-7-2

Jäger, Tim; Scherr, Claudia; Simon, Meinhard; Heusser, Peter; Baumgartner, Stephan (2011) Development of a Test System for Homeopathic Preparations Using Impaired Duckweed ( Lemna gibba L.). In: The Journal of Alternative and Complementary Medicine, S. 315–323. DOI: 10.1089/acm.2010.0246. http://online.liebertpub.com/doi/abs/10.1089/acm.2010.0246

Hartmann, Anja; Czauderna, Tobias; Hoffmann, Roberto; Stein, Nils; Schreiber, Falk (2011) HTPheno: an image analysis pipeline for high-throughput plant phenotyping. In: BMC bioinformatics, S. 148. DOI: 10.1186/1471-2105-12-148. http://www.biomedcentral.com/1471-2105/12/148

Plaschil, Sylvia; Krämer, Reiner (2011) Resistenzevaluierung mittels eines digitalen Bildanalysesystems am Beispiel von Rhododendron. In: Julius-Kühn-Archiv, S. 46.http://pub.jki.bund.de/index.php/JKA/article/viewArticle/1605

Prullage, Joseph B.; Tran, Hai V.; Timmons, Phil; Harriman, Jay; Chester, S. Theodore; Powell, Kerrie (2011) The combined mode of action of fipronil and amitraz on the motility of Rhipicephalus sanguineus. In: Veterinary parasitology, S. 302–310. DOI: 10.1016/j.vetpar.2011.03.041. http://www.sciencedirect.com/science/article/pii/S0304401711002275

Tresch S, Schmotz J, Grossmann K (2011) Probing mode of action in plant cell cycle by the herbicide endothall, a protein phosphatase inhibitor. Pesticide Biochemistry and Physiology 99:86–95; DOI:10.1016/j.pestbp.2010.11.004; https://www.sciencedirect.com/science/article/abs/pii/S0048357510001732

Vítková, Marianna; Dercová, Katarína; Molnárová, Jana; Tóthová, Lívia; Polek, Bystrík; Godočíková, Jana (2011) The effect of lignite and Comamonas testosteroni on pentachlorophenol biodegradation and soil ecotoxicity. In: Water, Air, & Soil Pollution, S. 145–155. DOI: 10.1007/s11270-010-0630-7. http://dx.doi.org/10.1007/s11270-010-0630-7

Watrud LS, King G, Londo JP, Colasanti R, Smith BM, Waschmann RS, Lee EH (2011) Changes in constructed Brassica communities treated with glyphosate drift. Ecological Applications 21:525–538; DOI:10.1890/09-2366.1; https://esajournals.onlinelibrary.wiley.com/doi/abs/10.1890/09-2366.1

Beuchat, Julien; Scacchi, Emanuele; Tarkowska, Danuse; Ragni, Laura; Strnad, Miroslav; Hardtke, Christian S. (2010) BRX promotes Arabidopsis shoot growth: Rapid report. In: New Phytologist, S. 23–29. DOI: 10.1111/j.1469-8137.2010.03387.x. http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.2010.03387.x/abstract

Büttner S, Delay C, Franssens V, Bammens T, Ruli D, Zaunschirm S, Oliveira RM de, Outeiro TF, Madeo F, Buée L, Galas M-C, Winderickx J (2010) Synphilin-1 enhances α-synuclein aggregation in yeast and contributes to cellular stress and cell death in a Sir2-dependent manner. PLoS ONE 5:e13700; DOI:10.1371/journal.pone.0013700; https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0013700

Castro A, Cantrell CL, Hale AL, Duke SO (2010) Phytotoxic Activity of Flavonoids from Dicranostyles Ampla. Natural Product Communications 5:1934578X1000500; DOI:10.1177/1934578X1000500817; https://journals.sagepub.com/doi/abs/10.1177/1934578X1000500817

Gartiser S, Hafner C, Hercher C, Kronenberger-Schäfer K, Paschke A (2010) Whole effluent assessment of industrial wastewater for determination of bat compliance: Part 1: Paper manufacturing industry. Environmental science and pollution research international 17:856–865; DOI:10.1007/s11356-009-0289-z; https://link.springer.com/article/10.1007/s11356-009-0289-z

Grossmann K, Niggeweg R, Christiansen N, Looser R, Ehrhardt T (2010) The Herbicide Saflufenacil (Kixor™) is a New Inhibitor of Protoporphyrinogen IX Oxidase Activity. Weed sci. 58:1–9; DOI:10.1614/WS-D-09-00004.1; https://www.cambridge.org/core/journals/weed-science/article/herbicide-saflufenacil-kixor-is-a-new-inhibitor-of-protoporphyrinogen-ix-oxidase-activity/DF7EA687386C61D3ABA61A57A75F2FF1

Harris, Brett N.; Sadras, Victor O.; Tester, Mark (2010) A water-centred framework to assess the effects of salinity on the growth and yield of wheat and barley. In: Plant and Soil, S. 377–389. DOI: 10.1007/s11104-010-0489-9. http://link.springer.com/10.1007/s11104-010-0489-9

Jäger, Tim; Scherr, Claudia; Simon, Meinhard; Heusser, Peter; Baumgartner, Stephan (2010); Effects of Homeopathic Arsenicum Album, Nosode, and Gibberellic Acid Preparations on the Growth Rate of Arsenic-Impaired Duckweed ( Lemna gibba L.). In: The Scientific World Journal, S. 2112–2129. DOI: 10.1100/tsw.2010.202. http://www.hindawi.com/journals/tswj/2010/107597/abs/

Pengelly JJL, Sirault XRR, Tazoe Y, Evans JR, Furbank RT, Caemmerer S von (2010) Growth of the C4 dicot Flaveria bidentis: photosynthetic acclimation to low light through shifts in leaf anatomy and biochemistry. Journal of Experimental Botany 61:4109–4122; https://academic.oup.com/jxb/article/61/14/4109/526761

Quang DN, Schmidt J, Porzel A, Wessjohann L, Haid M, Arnold N (2010) Ampullosine, a new Isoquinoline Alkaloid from Sepedonium ampullosporum (Ascomycetes). Natural Product Communications 5:1934578X1000500; DOI:10.1177/1934578X1000500609; https://journals.sagepub.com/doi/abs/10.1177/1934578X1000500609

Rosa, R.; Moreira-Santos, M.; Lopes, I.; Silva, L.; Rebola, J.; Mendonça, E.; Picado, A.; Ribeiro, R. (2010) Comparison of a test battery for assessing the toxicity of a bleached-kraft pulp mill effluent before and after secondary treatment implementation. In: Environmental Monitoring and Assessment, S. 439–451. DOI: 10.1007/s10661-009-0759-2. http://link.springer.com/10.1007/s10661-009-0759-2

Schnurbusch, Thorsten; Hayes, Julie; Sutton, Tim (2010) Boron toxicity tolerance in wheat and barley: Australian perspectives. In: Breeding Science, S. 297–304. DOI: 10.1270/jsbbs.60.297.http://joi.jlc.jst.go.jp/JST.JSTAGE/jsbbs/60.297?from=CrossRef

Weiss, J.; Sos, M. L.; Seidel, D.; Peifer, M.; Zander, T.; Heuckmann, J. M.; Ullrich, R. T.; Menon, R.; Maier, S.; Soltermann, A.; Moch, H.; Wagener, P.; Fischer, F.; Heynck, S.; Koker, M.; Schottle, J.; Leenders, F.; Gabler, F.; Dabow, I.; Querings, S.; Heukamp, L. C.; Balke-Want, H.; Ansen, S.; Rauh, D.; Baessmann, I.; Altmuller, J.; Wainer, Z.; Conron, M.; Wright, G.; Russell, P.; Solomon, B.; Brambilla, E.; Brambilla, C.; Lorimier, P.; Sollberg, S.; Brustugun, O. T.; Engel-Riedel, W.; Ludwig, C.; Petersen, I.; Sanger, J.; Clement, J.; Groen, H.; Timens, W.; Sietsma, H.; Thunnissen, E.; Smit, E.; Heideman, D.; Cappuzzo, F.; Ligorio, C.; Damiani, S. et al. (2010) Frequent and Focal FGFR1 Amplification Associates with Therapeutically Tractable FGFR1 Dependency in Squamous Cell Lung Cancer. In: Science Translational Medicine, S. 62ra93–62ra93. DOI: 10.1126/scitranslmed.3001451. http://stm.sciencemag.org/cgi/doi/10.1126/scitranslmed.3001451

    • Aliferis, Konstantinos A.; Materzok, Sylwia; Paziotou, Georgia N.; Chrysayi-Tokousbalides, Maria (2009)

      Lemna minor L. as a model organism for ecotoxicological studies performing 1H NMR fingerprinting. In: Chemosphere, S. 967–973. DOI: 10.1016/j.chemosphere.2009.04.025. http://www.sciencedirect.com/science/article/pii/S0045653509004792

    • Mendonça, Elsa; Picado, Ana; Paixão, Susana Maria; Silva, Luís; Cunha, Maria Ana; Leitão, Sara; Moura, Isabel; Cortez, Cristina; Brito, Fátima (2009)

      Ecotoxicity tests in the environmental analysis of wastewater treatment plants: Case study in Portugal. In: Journal of Hazardous Materials, S. 665–670. DOI: 10.1016/j.jhazmat.2008.07.012.http://www.sciencedirect.com/science/article/pii/S030438940801039X

    • Scherr, Claudia; Simon, Meinhard; Spranger, Jörg; Baumgartner, Stephan (2009)

      Effects of potentised substances on growth rate of the water plant Lemna gibba L. In: Complementary therapies in medicine, S. 63–70. DOI: 10.1016/j.ctim.2008.10.004. http://www.complementarytherapiesinmedicine.com/article/S0965-2299(08)00142-8/abstract

    • Rajendran, Karthika; Tester, Mark; Roy, Stuart J. (2009)

      Quantifying the three main components of salinity tolerance in cereals. In: Plant, Cell & Environment, S. 237–249. DOI: 10.1111/j.1365-3040.2008.01916.x. http://doi.wiley.com/10.1111/j.1365-3040.2008.01916.x

Paixão, Susana M.; Silva, Luís; Fernandes, Andreia; O’Rourke, Kathleen; Mendonça, Elsa; Picado, Ana (2008) Performance of a miniaturized algal bioassay in phytotoxicity screening. In: Ecotoxicology, S. 165–171. DOI: 10.1007/s10646-007-0179-4. http://link.springer.com/10.1007/s10646-007-0179-4

Picado, Ana; Mendonça, Elsa; Silva, Luís; Paixão, Susana M.; Brito, Fátima; Cunha, Maria Ana; Leitão, Sara; Moura, Isabel; Hernan, Robert (2008) Ecotoxicological assessment of industrial wastewaters in Trancão River Basin (Portugal). In: Environmental Toxicology, S. 466–472. DOI: 10.1002/tox.20359. http://onlinelibrary.wiley.com/doi/10.1002/tox.20359/abstract

Scherr, Claudia; Simon, Meinhard; Spranger, Jörg; Baumgartner, Stephan (2008) Test system stability and natural variability of a Lemna gibba L. bioassay. In: PLoS ONE, S. e3133-e3133. DOI: 10.1371/journal.pone.0003133. http://dx.doi.org/10.1371/journal.pone.0003133

Tresch, Stefan; Niggeweg, Ricarda; Grossmann, Klaus (2008) The herbicide flamprop-M-methyl has a new antimicrotubule mechanism of action. In: Pest Management Science, S. 1195–1203. DOI: 10.1002/ps.1618. http://onlinelibrary.wiley.com/doi/10.1002/ps.1618/abstract

Wang X., Wedge D.E., Tabanca N., Johnson R.D., Cutler S.J., Pace P.F., Smith B.J., Zhou L. (2008) Development of a Miniaturized 24-well Strawberry Leaf Disk Bioassay for Evaluating Natural Fungicides. Natural Product Communications, 3, 1934578X0800300. DOI:10.1177/1934578X0800300709

  • Cantrell, Charles L.; Duke, Stephen O.; Fronczek, Frank R.; Osbrink, Weste L. A.; Mamonov, Leonid K.; Vassilyev, Juriy I.; Wedge, David E.; Dayan, Franck E. (2007)

    Phytotoxic eremophilanes from Ligularia macrophylla. In: Journal of Agricultural and Food Chemistry, S. 10656–10663. DOI: 10.1021/jf072548w. http://pubs.acs.org/doi/abs/10.1021/jf072548w

  • Grossmann, Klaus; Ehrhardt, Thomas (2007)

    On the mechanism of action and selectivity of the corn herbicide topramezone: a new inhibitor of 4-hydroxyphenylpyruvate dioxygenase. In: Pest Management Science, S. 429–439. DOI: 10.1002/ps.1341. http://onlinelibrary.wiley.com/doi/10.1002/ps.1341/abstract

  • Mendonça, E.; Picado, A.; Silva, L.; Anselmo, A. M. (2007)

    Ecotoxicological evaluation of cork-boiling wastewaters. In: Ecotoxicology and Environmental Safety, S. 384–390. DOI: 10.1016/j.ecoenv.2006.02.013. http://www.sciencedirect.com/science/article/pii/S0147651306000534

  • Scherr, Claudia; Simon, Meinhard; Spranger, Jörg; Baumgartner, Stephan (2007)

    Duckweed ( Lemna gibba L.) as a Test Organism for Homeopathic Potencies. In: The Journal of Alternative and Complementary Medicine, S. 931–937. DOI: 10.1089/acm.2007.0506. http://online.liebertpub.com/doi/abs/10.1089/acm.2007.0506

  • Gómez-Varela, David; Zwick-Wallasch, Esther; Knötgen, Hendrik; Sánchez, Araceli; Hettmann, Thore; Ossipov, Dmitri; Weseloh, Rüdiger; Contreras-Jurado, Constanza; Rothe, Mike; Stühmer, Walter; others (2007)

    Monoclonal antibody blockade of the human Eag1 potassium channel function exerts antitumor activity. In: Cancer Research, S. 7343–7349. DOI: 10.1158/0008-5472.CAN-07-0107.http://cancerres.aacrjournals.org/content/67/15/7343

  • Diers, Jeffrey A.; Bowling, John J.; Duke, Stephen O.; Wahyuono, Subagus; Kelly, Michelle; Hamann, Mark T. (2006)

    Zebra Mussel Antifouling Activity of the Marine Natural Product Aaptamine and Analogs. In: Marine Biotechnology, S. 366–372. DOI: 10.1007/s10126-005-6055-4. http://link.springer.com/10.1007/s10126-005-6055-4

  • Meepagala, Kumudini M.; Sturtz, George; Wedge, David E.; Schrader, Kevin K.; Duke, Stephen O. (2005)

    Phytotoxic and Antifungal Compounds from Two Apiaceae Species, Lomatium californicum and Ligusticum hultenii, Rich Sources of Z-ligustilide and Apiol, Respectively. In: J Chem Ecol (Journal of Chemical Ecology), S. 1567–1578. DOI: 10.1007/s10886-005-5798-8.http://dx.doi.org/10.1007/s10886-005-5798-8

  • Tresch, Stefan; Plath, Peter; Grossmann, Klaus (2005)

    Herbicidal cyanoacrylates with antimicrotubule mechanism of action. In: Pest Management Science, S. 1052–1059. DOI: 10.1002/ps.1093.http://onlinelibrary.wiley.com/doi/10.1002/ps.1093/abstract

  • Reekmans, R.; Smet, K.; Chen, C.; Hummelen, P.; Contreras, R. (2005)

    Old yellow enzyme interferes with Bax-induced NADPH loss and lipid peroxidation in yeast. In: FEMS Yeast Research, S. 711–725. DOI: 10.1016/j.femsyr.2004.12.010. http://femsyr.oxfordjournals.org/content/5/8/711

  • Belz, Regina; Hurle, Karl; Duke, Stephen (2005)

    Dose-response—A Challenge for Allelopathy?. In: Nonlinearity in Biology, Toxicology, and Medicine, S. 173–211. DOI: 10.2201/nonlin.003.02.002.http://www.ncbi.nlm.nih.gov/pubmed/19330161

  • Grossmann, Klaus (2005)

    What it takes to get a herbicide’s mode of action. Physionomics, a classical approach in a new complexion. In: Pest Management Science, S. 423–431. DOI: 10.1002/ps.1016. http://onlinelibrary.wiley.com/doi/10.1002/ps.1016/abstract